New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Probability Distributions Reduced Syllabus Important Questions With Answer Key 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 100

      Multiple Choice Questions


    15 x 1 = 15
  1. A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is

    (a)

    6

    (b)

    4

    (c)

    3

    (d)

    2

  2. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is

    (a)

    \(\frac { 11 }{ 243 } \)

    (b)

    \(\frac { 3 }{ 8 } \)

    (c)

    \(\frac { 1 }{ 243 } \)

    (d)

    \(\frac { 5 }{ 243 } \)

  3. If P(X = 0) = 1 − P(X = 1). If E(X) = 3Var(X), then P(X = 0).

    (a)

    \(\frac { 2 }{ 3 } \)

    (b)

    \(\frac { 2 }{ 5 } \)

    (c)

    \(\frac { 1 }{ 5 } \)

    (d)

    \(\frac { 1 }{ 3 } \)

  4. If X is a binomial random variable with expected value 6 and variance 2.4, then P(X = 5) is 

    (a)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 6 }\left( \frac { 2 }{ 5 } \right) ^{ 4 }\) 

    (b)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 10 }\)

    (c)

    \(\left( \frac { 10 }{ 5 } \right) { \left( \frac { 3 }{ 5 } \right) }^{ 4 }\left( \frac { 2 }{ 5 } \right) ^{ 6 }\)

    (d)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 5 }\left( \frac { 2 }{ 5 } \right) ^{ 5 }\)

  5. The random variable X has the probability density function 
    \(f(x)=\left\{\begin{array}{lr} a x+b & 0<x<1 \\ 0 & \text { otherwise } \end{array}\right.\) and \(E(X)=\frac { 7 }{ 12 } \)then a and b are respectively

    (a)

    1 and \(\frac { 1 }{ 2 } \)

    (b)

    \(\frac { 1 }{ 2 } \) and 1

    (c)

    2 and 1

    (d)

    1 and 2

  6. Suppose that X takes on one of the values 0, 1, and 2. If for some constant k, \(P(X=i)=k P(X=i-1) \text { for } i=1,2 \text { and } P(X=0)=\frac{1}{7}\) , then the value of k is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  7. Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X - 3) is

    (a)

    0.24

    (b)

    0.48

    (c)

    0.6

    (d)

    0.96

  8. If in 6 trials, X is a binomial variable which follows the relation 9P(X = 4) = P(X = 2), then the probability of success is

    (a)

    0.125

    (b)

    0.25

    (c)

    0.375

    (d)

    0.75

  9. If \(f(x)=\frac { 1 }{ 2 } \) ,\(E\left( { x }^{ 2 } \right) =\frac { 1 }{ 4 } \) then var(x) is _____________

    (a)

    0

    (b)

    \(\frac { 1 }{ 4 } \)

    (c)

    \(\frac { 1 }{ 2 } \)

    (d)

    1

  10. In a binomial distribution, if the mean is 8 and the variance is 6, then the number of trials is _____________

    (a)

    32

    (b)

    48

    (c)

    16

    (d)

    12

  11. A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of number of success is _____________

    (a)

    \(\frac { 8 }{ 3 } \)

    (b)

    \(\frac { 3 }{ 8 } \)

    (c)

    \(\frac { 4 }{ 5 } \)

    (d)

    \(\frac { 5 }{ 4 } \)

  12. Var (2x ± 5) is =________

    (a)

    5

    (b)

    var (2x) ± 5

    (c)

    4 var (X)

    (d)

    0

  13. If the mean and variance of a binomial variate are 2 and 1 respectively, the probability that X takes a value greater than one is equal to__________.

    (a)

    \(\frac { 5 }{ 16 } \)

    (b)

    \(\frac { 11 }{ 16 } \)

    (c)

    \(\frac { 10 }{ 16 } \)

    (d)

    \(\frac { 1 }{ 2 } \)

  14. A die is thrown 10 times. Getting a number greater than 3 is considered a success. The S.D of the number of successes is _________

    (a)

    2.5

    (b)

    1.56

    (c)

    5

    (d)

    25

  15. For a Bernouli distribution

    (a)

    \(\sigma =\sqrt { npq } \)

    (b)

    \(mean=\mu \)

    (c)

    \(\mu =p\)

    (d)

    \({ \sigma }^{ 2 }=pq\)

    1. 2 Marks


    10 x 2 = 20
  16. Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.

  17. If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights
    (i) exactly 10 will have a useful life of at least 600 hours;
    (ii) at least 11 will have a useful life of at I least 600 hours;  
    (iii) at least 2 will not have a useful life of at : least 600 hours.

  18. Compute P(X = k) for the binomial distribution, B(n, p) where
    n = 9, \(p=\frac { 1 }{ 2 } \), k = 7

  19. Find the binomial distribution function for each of the following.
    (i) Five fair coins are tossed once and X denotes the number of heads.
    (ii) A fair die is rolled 10 times and X denotes the number of times 4 appeared.

    1. 3 Marks


    10 x 3 = 30
  20. In a pack of 52 playing cards, two cards are drawn at random simultaneously. If the number of black cards drawn is a random variable, find the values of the random variable and number of points in its inverse images.

  21. A six sided die is marked '2' on one face, '3' on two ofits faces, and '4' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images.

  22. For the random variable X with the given probability mass function as below, find the mean and variance \(f(x)= \begin{cases}2(x-1) & 1

  23. The probability that a certain kind of component will survive a electrical test is \(\frac { 3 }{ 4 } \). Find the probability that exactly 3 of the 5 components tested survive.

  24. Suppose two coins are tossed once. If X denotes the number of tails,
    (i) write down the sample space
    (ii) find the inverse image of 1
    (iii) the values of the random variable and number of elements in its inverse images

  25. Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred.

  26. If the probability mass function f(x) of a random variable X is

    x 1 2 3 4
    f (x) \(\cfrac { 1 }{ 12 } \) \(\cfrac { 5 }{ 12 } \) \(\cfrac { 5 }{ 12 } \) \(\cfrac { 1 }{ 12 } \)

    find (i) its cumulative distribution function, hence find
    (ii) P(X ≤ 3) and,
    (iii) P(X ≥ 2)

  27. If X is the random variable with distribution function F(x) given by,
    \(F(x)=\begin{cases} \begin{matrix} 0 & x<0 \end{matrix} \\ \begin{matrix} x & 0\le x<1 \end{matrix} \\ \begin{matrix} 1 & 1\le x \end{matrix} \end{cases}\) 
    then find
    (i) the probability density function f(x)
    (ii) P(0.2 ≤ X ≤ 0.7)

  28. Find the mean and variance of a random variable X , whose probability density function is \(f(x)=\begin{cases} \begin{matrix} { \lambda e }^{ -2x } & for\ge 0 \end{matrix} \\ \begin{matrix} 0 & otherwise \end{matrix} \end{cases}\)

    1. 5 Marks


    7 x 5 = 35
  29. The probability density function of X is given
    \(f(x)=\begin{cases} \begin{matrix} { Ke }^{ \frac { -x }{ 3 } } & \begin{matrix} for & x>0 \end{matrix} \end{matrix} \\ \begin{matrix} 0 & \begin{matrix} for & x\le 0 \end{matrix} \end{matrix} \end{cases}\)
    Find
    (i) the value of k
    (ii) the distribution function.
    (iii) P(X <3)
    (iv) P(5 ≤X)
    (v) P(X ≤ 4)

  30. If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights
    (i) exactly 10 will have a useful life of at least 600 hours
    (ii) at least 11 will have a useful life of at least 600 hours
    (iii) at least 2 will not have a useful life of at least 600 hours.

  31. A random variable X has the following probability mass function

    x  1   2  3  4  5  6
    f(x)  k  2k   6k   5k   6k   10k 

    Find
    (i) P(2 < X < 6)
    (ii) P(2 ≤ X < 5)
    (iii) P(X ≤4)
    (iv) P(3 < X )

  32. The probability density function of random variable X is given by \(f(x)=\begin{cases} \begin{matrix} k & 1\le x\le 5 \end{matrix} \\ \begin{matrix} 0 & otherwise \end{matrix} \end{cases}\) Find
    (i) Distribution function
    (ii) P(X < 3)
    (iii) P(2 < X < 4)
    (iv) P(3 ≤ X )

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Probability Distributions Reduced Syllabus Important Questions With Answer Key 2021

Write your Comment