New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Reduced Syllabus Model Question paper - 2021 Part - 1

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 90

      Part I

      Answer all the questions.

      Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer.

    20 x 1 = 20
  1. If P = \(\left[ \begin{matrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{matrix} \right] \) is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

    (a)

    15

    (b)

    12

    (c)

    14

    (d)

    11

  2. If ATA−1 is symmetric, then A2 =

    (a)

    A-1

    (b)

    (AT)2

    (c)

    AT

    (d)

    (A-1)2

  3. If \(4{ cos }^{ -1 }x+{ sin }^{ -1 }x=\pi \) then x is _____________

    (a)

    \(\frac { 3 }{ 2 } \)

    (b)

    \(\frac { 1 }{ \sqrt { 2 } } \)

    (c)

    \(\frac { \sqrt { 3 } }{ 2 } \)

    (d)

    \(\frac { 2 }{ \sqrt { 3 } } \)

  4. The value of tan \(\left( { cos }^{ -1 }\frac { 3 }{ 5 } +{ tan }^{ -1 }\frac { 1 }{ 4 } \right) \) is ______

    (a)

    \(\frac { 19 }{ 8 } \)

    (b)

    \(\frac { 8 }{ 19 } \)

    (c)

    \(\frac { 19 }{ 12 } \)

    (d)

    \(\frac { 3 }{ 4 } \)

  5. Equation of tangent at (-4, -4) on x2 = -4y is _____________

    (a)

    2x - y + 4 = 0

    (b)

    2x + y - 4 = 0

    (c)

    2x - y - 12 = 0

    (d)

    2x + y + 4 = 0

  6. The distance between the foci of a hyperbola is 16 and e = \(\sqrt { 2 } \). Its equation is ____________

    (a)

    x2 - y2 = 32

    (b)

    y2 - x2 = 32

    (c)

    x2 - y2 = 16

    (d)

    y2 - x2 = 16

  7. If the foci of the ellipse \(\frac { { x }^{ 2 } }{ 16 } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } \) = 1 and the hyperbola \(\frac { { x }^{ 2 } }{ 144 } -\frac { { y }^{ 2 } }{ 81 } =\frac { 1 }{ 25 } \) coincide then b2 is __________

    (a)

    1

    (b)

    5

    (c)

    7

    (d)

    9

  8. The length of major and minor axes of 4x2 + 3y2 = 12 are ____________

    (a)

    4, 2\(\sqrt3\)

    (b)

    2, \(\sqrt3\)

    (c)

    2\(\sqrt3\), 4

    (d)

    \(\sqrt3\), 2

  9. The tangent at any point P on the ellipse \(\frac { { x }^{ 2 } }{ 6 } +\frac { { y }^{ 2 } }{ 3 } \) = 1 whose centre C meets the major axis at T and PN is the perpendicular to the major axis; The CN CT = ______________

    (a)

    \(\sqrt6\)

    (b)

    3

    (c)

    \(\sqrt3\)

    (d)

    6

  10. If \(\lambda \overset { \wedge }{ i } +2\lambda \overset { \wedge }{ j } +2\lambda \overset { \wedge }{ k } \) is a unit vector, then the value of λ is _____________

    (a)

    土 \(\frac { 1 }{ 3 } \)

    (b)

    土 \(\frac { 1 }{ 4 } \)

    (c)

    土 \(\frac { 1 }{ 9 } \)

    (d)

    \(\frac { 1 }{ 2 } \)

  11. If the vectors \(a\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \)\(\overset { \wedge }{ i } +b\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \wedge }{ i } +\overset { \wedge }{ j } +c\overset { \wedge }{ k } \) (a ≠ b ≠ c ≠ 1) are coplaner, then \(\frac { 1 }{ 1-a } +\frac { 1 }{ 1-b } +\frac { 1 }{ 1-c } =\) _____________

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    \(\frac { abc }{ (1-a)(1-b)(1-c) } \)

  12. The equation of the tangent to the curve y = x2-4x+2 at (4, 2) is __________

    (a)

    x + 4y + 12 = 0

    (b)

    4x + y + 12 = 0

    (c)

    4x - y - 14 = 0

    (d)

    x + 4y - 12 = 0

  13. If the radius of the sphere is measured as 9 cm with an error of 0.03 cm, the approximate error in calculating its volume is _____________

    (a)

    9.72 cm3

    (b)

    0.972 cm3

    (c)

    0.972π cm3

    (d)

    9.72π cm3

  14. The value of \(\int _{ -\pi }^{ \pi }{ { sin }^{ 3 }x \ { cos }^{ 3 }x \ } dx\) is __________

    (a)

    0

    (b)

    \(\pi \)

    (c)

    2\(\pi \)

    (d)

    4\(\pi \)

  15. The I.F of y log y \(\frac{dx}{dy}+x-log\ y=0\) is __________

    (a)

    log(log y)

    (b)

    log y

    (c)

    \(\frac{1}{log\ y}\)

    (d)

    \(\frac{1}{log(log\ y)}\)

  16. If a random variable X has the p.d.f.\(f(x)=\frac { k }{ { x }^{ 2 }+1 }\) ,0 then k is _____________

    (a)

    \(\pi \)

    (b)

    \(\frac { 1 }{ \pi } \)

    (c)

    1

    (d)

    \(\frac { 2 }{ \pi } \)

  17. The sum of the mean and variance of a binomial distribution for 6 total is 2.16. Then the probability of success p =__________

    (a)

    0.4

    (b)

    0.6

    (c)

    0.8

    (d)

    0.2

  18. The identity element of \(\left\{ \left( \begin{matrix} x & x \\ x & x \end{matrix} \right) \right\} \) |x \(\in \) R, x ≠ 0} under matrix multiplication is __________

    (a)

    \(\left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) \)

    (b)

    \(\left( \begin{matrix} \frac { 1 }{ 4x } & \frac { 1 }{ 4x } \\ \frac { 1 }{ 4x } & \frac { 1 }{ 4x } \end{matrix} \right) \)

    (c)

    \(\left( \begin{matrix} \frac { 1 }{ 2 } & \frac { 1 }{ 2 } \\ \frac { 1 }{ 2 } & \frac { 1 }{ 2 } \end{matrix} \right) \)

    (d)

    \(\left( \begin{matrix} \frac { 1 }{ 2x } & \frac { 1 }{ 2x } \\ \frac { 1 }{ 2x } & \frac { 1 }{ 2x } \end{matrix} \right) \)

  19. Define * on Z by a * b = a + b + 1 ∀ a,b \(\in \) Z. Then the identity element of z is ________

    (a)

    1

    (b)

    0

    (c)

    1

    (d)

    -1

  20. Which of the following is a statement?

    (a)

    7+2<10

    (b)

    Wish you all success

    (c)

    All the best

    (d)

    How old are you?

  21. Part II

    Answer any 7 questions. Question no. 27 is compulsory.

    7 x 2 = 14
  22. If \(\overset { \rightarrow }{ a } =\overset { \wedge }{ i } +2\overset { \wedge }{ j } +3\overset { \wedge }{ k } \)\(\overset { \rightarrow }{ b } =-\overset { \wedge }{ i } +2\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \rightarrow }{ c } =3\overset { \wedge }{ i } +\overset { \wedge }{ j } \) find \(\frac { \lambda }{ c } \) such that \(\overset { \rightarrow }{ a } +\lambda \overset { \rightarrow }{ b } \) is perpendicular to \(\overset { \rightarrow }{ c } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    -a

  23. Evaluate  \(\underset{x\rightarrow 1}{lim}(\frac{x^{2}-3x+2}{x^{2}-4x+3})\).

  24. Find df for f(x) = x2 + 3x and evaluate it for
    x = 3 and dx = 0.02

  25. If w=log(x2+y2),x=cosθ,y=sinθ, find \(\frac { dw }{ d\theta } \)

  26. Evaluate: \(\int _{ 0 }^{ 3 }{ (3{ x }^{ 2 }-4x+5) } dx\)

  27. For each of the following differential equations, determine its order, degree (if exists)
    \({ \left( \frac { d^2y }{ dx^2 } \right) }^{ 3 }=\sqrt { 1+\left( \frac { dy }{ dx } \right) } \)

  28. Write the converse, inverse, and contrapositive of each of the following implication.
    If x and y are numbers such that x = y, then x2 = y2

    1. Part III

      Answer any 7 questions. Question no. 34 is compulsory.

    7 x 3 = 21
  29. Find the rank of the matrix math \(\left[ \begin{matrix} 4 \\ -2 \\ 1 \end{matrix}\begin{matrix} 4 \\ 3 \\ 4 \end{matrix}\begin{matrix} 0 \\ -1 \\ 8 \end{matrix}\begin{matrix} 3 \\ 5 \\ 7 \end{matrix} \right] \).

  30. Prove that \({ tan }^{ -1 }\left( \frac { m }{ n } \right) -{ tan }^{ -1 }\left( \frac { m-n }{ m+n } \right) =\frac { \pi }{ 4 } \)

  31. Show that the lines \(\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-1 }{ 5 } \) and \(\frac { x+2 }{ 4 } =\frac { y-1 }{ 3 } =\frac { z+1 }{ -2 } \) do not intersect

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    a, b, c

  32. A ball is thrown vertically upwards, moves according to the law s = 13.8 t - 4.9 t2 where s
    is in metres and t is in seconds.
    (i) Find the acceleration at t = 1
    (ii) Find velocity at t = 1
    (iii) Find the maximum height reached by the ball?

  33. Solve : ydx+(x-y2)dy=0

    1. Part IV

      Answer all the questions.

    7 x 5 = 35
  34. Solve: (2x2 - 3x + 1) (2x2 + 5x + 1) = 9x2.

  35. The girder of a railway bridge is a parabola with its vertex at the highest point 15 m above the ends. If the span is 120 m, find the height of the bridge at 24 m from the middle point.

  36. Gas is escaping from a spherical balloon at the rate of 900 cm3/sec. How fast is the surface area and radius of the balloon shrinking when the radius of the balloon is 30 cm?

  37. Find the intervals for which the function f(x)=2x2-9x2-12x+1 is increasing or decfreasing and find the local extermems.

  38. Find the local maximum and local minimum values for f(x)=12x2-2x2-x4.

  39. Let X be a random variable denoting the life time of an electrical equipment having probability density function
    \(f(x)=\begin{cases} \begin{matrix} { ke }^{ -2x } & forx>0 \end{matrix} \\ \begin{matrix} 0 & forx\le 0 \end{matrix} \end{cases}\) 
    Find
    (i) the value of k
    (ii) Distribution function 
    (iii) P(X < 2)
    (iv) calculate the probability that X is at least for four unit of time 
    (v) P(X = 3)

  40. Prove that p➝(¬q V r) ≡ ¬pV(¬qVr) using truth table.

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Reduced Syllabus Model Question paper - 2021 Part - 1

Write your Comment