New ! Maths MCQ Practise Tests



Inverse Trigonometric Functions Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:00:00 Hrs
Total Marks : 50
    5 x 1 = 5
  1. The value of sin-1 (cos x), \(0\le x\le\pi\) is

    (a)

    \(\pi-x\)

    (b)

    \(x-\frac{\pi}{2}\)

    (c)

    \(\frac{\pi}{2}-x\)

    (d)

    \(x-\pi\)

  2. \(\sin ^{-1}(\cos x)=\frac{\pi}{2}-x\) is valid for

    (a)

    \(-\pi \le x\le 0\)

    (b)

    \(0 \le x\le \pi\)

    (c)

    \(-\frac { \pi }{ 2 } \le x\le \frac { \pi }{ 2 } \)

    (d)

    \(-\frac { \pi }{ 4 } \le x\le \frac { 3\pi }{ 4 } \)

  3. The domain of the function defined by \(f(x)=\sin ^{-1} \sqrt{x-1}\) is

    (a)

    [1, 2]

    (b)

    [-1, 1]

    (c)

    [0, 1]

    (d)

    [-1, 0]

  4. \(\sin ^{-1}\left(\tan \frac{\pi}{4}\right)-\sin ^{-1}\left(\sqrt{\frac{3}{x}}\right)=\frac{\pi}{6}\). Then x is a root of the equation

    (a)

    x2−x−6 = 0

    (b)

    x2−x−12 = 0

    (c)

    x2+x−12 = 0

    (d)

    x2+x−6 = 0

  5. sin (tan-1x), |x| < 1 is equal to

    (a)

    \(\frac{x}{\sqrt{1-x^2}}\)

    (b)

    \(\frac{1}{\sqrt{1-x^2}}\)

    (c)

    \(\frac{1}{\sqrt{1+x^2}}\)

    (d)

    \(\frac{x}{\sqrt{1+x^2}}\)

  6. 5 x 1 = 5
  7. Amplitude of sine function

  8. (1)

    1

  9. \(sin^{ -1 }\left( \frac { 1 }{ x } \right) \)

  10. (2)

    does not exist

  11. cos-1(-x)

  12. (3)

    \(\pi \)

  13. \({ cos }^{ -1 }(-1)\)

  14. (4)

    \(\pi -{ cos }^{ -1 }x\)

  15. \({ sec }^{ -1 }(2)\)

  16. (5)

    cosec-1x

    8 x 2 = 16
  17. Find the principal value of sin-1(2), if it exists.

  18. For what value of x does sinx = sin−1x?

  19. State the reason for cos-1\([cos(-\frac{\pi}{6})]\neq \frac{\pi}{6}.\)

  20. Find the value of
    \(2{ cos }^{ -1 }\left( \frac { 1 }{ 2 } \right) +{ sin }^{ -1 }\left( \frac { 1 }{ 2 } \right) \)

  21. Simplify \({ cos }^{ -1 }\left( cos\left( \frac { 13\pi }{ 3 } \right) \right) \)

  22. Find the period and amplitude of y = 4sin(−2x)

  23. Find the value of 
    tan (tan−1(1947))

  24. Simplify sin-1[sin10]

  25. 3 x 3 = 9
  26. Find the domain of sin−1(2−3x2)

  27. Find the domain of cos-1\((\frac{2+sinx}{3})\)

  28. Find the value of tan−1(−1 ) + cos-1\((\frac{1}{2})+sin^-1(-\frac{1}{2})\)

  29. 3 x 5 = 15
  30. Find the principal value of cos−1\(\left( \frac { \sqrt { 3 } }{ 2 } \right) \)

  31. Solve \(tan^{ -1 }\left( \frac { x-1 }{ x-2 } \right) +tan^{ -1 }\left( \frac { x+1 }{ x+2 } \right) =\frac { \pi }{ 4 } \)

  32. Find the principal value of
    sec−1(−2).

*****************************************

Reviews & Comments about 12th Standard Maths - Inverse Trigonometric Functions Model Question Paper

Write your Comment