New ! Maths MCQ Practise Tests



Application of Matrices and Determinants Book Back Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 50
    5 x 1 = 5
  1. If |adj(adj A)| = |A|9, then the order of the square matrix A is

    (a)

    3

    (b)

    4

    (c)

    2

    (d)

    5

  2. If A is a 3 \(\times\) 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

    (a)

    A

    (b)

    B

    (c)

    I3

    (d)

    BT

  3. If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

    (a)

    \(\frac { 1 }{ 3 } \)

    (b)

    \(\frac { 1 }{ 9 } \)

    (c)

    \(\frac { 1 }{ 4 } \)

    (d)

    1

  4. If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I2 - A = 

    (a)

    A-1

    (b)

    \(\frac { { A }^{ -1 } }{ 2 } \)

    (c)

    3A-1

    (d)

    2A-1

  5. If A = \(\left[ \begin{matrix} 2 & 0 \\ 1 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} 1 & 4 \\ 2 & 0 \end{matrix} \right] \) then |adj (AB)| = 

    (a)

    -40

    (b)

    -80

    (c)

    -60

    (d)

    -20

  6. 5 x 2 = 10
  7. If A = \(\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \) is non-singular, find A−1.

  8. If A is a non-singular matrix of odd order, prove that |adj A| is positive

  9. If adj A = \(\left[ \begin{matrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] \), find A−1.

  10. If A is symmetric, prove that then adj A is also symmetric.

  11. Prove that \(\left[ \begin{matrix} \cos { \theta } & -\sin { \theta } \\ \sin { \theta } & \cos { \theta } \end{matrix} \right] \) is orthogonal.

  12. 5 x 3 = 15
  13. Find the rank of the following matrices by row reduction method:
    \(\left[ \begin{matrix} 1 \\ \begin{matrix} 3 \\ \begin{matrix} 1 \\ 1 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} 2 \\ \begin{matrix} -1 \\ \begin{matrix} -2 \\ -1 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} -1 \\ \begin{matrix} 2 \\ \begin{matrix} 3 \\ 1 \end{matrix} \end{matrix} \end{matrix} \right] \)

  14. Find the rank of the following matrices by row reduction method:
    \(\left[ \begin{matrix} 3 \\ \begin{matrix} 2 \\ -1 \end{matrix} \end{matrix}\begin{matrix} -8 \\ \begin{matrix} -5 \\ 2 \end{matrix} \end{matrix}\begin{matrix} 5 \\ \begin{matrix} 1 \\ 3 \end{matrix} \end{matrix}\begin{matrix} 2 \\ \begin{matrix} 4 \\ -2 \end{matrix} \end{matrix} \right] \)

  15. Solve the following system of linear equations by matrix inversion method :
    2x  −  y  =  8 ,   3x  +  2y  =  −2.

  16. Solve the following systems of linear equations by Cramer’s rule:
     \(\frac { 3 }{ x } \) + 2y = 12, \(\frac { 2 }{ x } \) + 3y = 13

  17. Find the rank of each of the following matrices:
    \(\left[ \begin{matrix} 4 & 3 \\ -3 & -1 \\ 6 & 7 \end{matrix}\begin{matrix} 1 & -2 \\ -2 & 4 \\ -1 & 2 \end{matrix} \right] \)

  18. 4 x 5 = 20
  19. Solve the following system of linear equations by matrix inversion method:
    2x + 3y − z = 9, x + y + z = 9, 3x − y − z  = −1

  20. Solve the following system of linear equations by matrix inversion method:
    x + y + z − 2 = 0, 6x − 4y + 5z − 31 = 0, 5x + 2y + 2z = 13.

  21. Solve the following systems of linear equations by Cramer’s rule:
     3x + 3y − z = 11, 2x − y + 2z = 9, 4x + 3y + 2z = 25.

  22. Solve the following systems of linear equations by Cramer’s rule:
    \(\frac { 3 }{ x } -\frac { 4 }{ y } -\frac { 2 }{ z } \) -1 = 0, \(\frac { 1 }{ x } +\frac { 2 }{ y } +\frac { 1 }{ z } \) - 2 = 0, \(\frac { 2 }{ x } -\frac { 5 }{ y } -\frac { 4 }{ z } \) + 1 = 0

*****************************************

Reviews & Comments about 12th Standard Maths Unit 1 Application of Matrices and Determinants Book Back Questions

Write your Comment