CBSE 11th Standard Physics Subject Ncert Exemplar 2 Mark Questions 2021 Part - I
By QB365
QB365 Provides the updated NCERT Exemplar Questions for Class
11, and also provide the detail solution for each and every NCERT Exemplar questions. NCERT Exemplar questions are latest updated question pattern from NCERT, QB365 will helps to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Physics Subject Ncert Exemplar 2 Mark Questions 2021 Part - I
11th Standard CBSE
-
Reg.No. :
Physics
-
A person of mass 50 kg stands on a weighing scale on a lift. If the lift is descending with a downwards acceleration of 9 m/s2 , what would be the reading of the weighing scale ?
When a lift descends with a downward acceleration 8, V the apparent weight of a body of mass m is given by w' = R = m (g - a)(a) -
Calculate the work done by a car against gravity is zero because force of gravity is vertical and motion of car is along a straight horizontal road.
(a) -
Why does a solid sphere have smaller moment of inertia than a hollow cylinder of same mass and radius about an axis passing through their axis of symmetry?
(a) -
A solid cylinder of mass 20 kg rotates about its axis with angular speed of 100 rad/s. The radius of cylinder is 0.25m. What is KE of rotation of cylinder?
(a) -
Equation of a plane progressive wave is given by y = 0.6 sin\(2\pi \left( t-\frac { x }{ 2 } \right) \)
On reflection from a denser medium, its amplitude becomes 2/3 of the amplitude of incident wave. What will be equation of reflected wave?(a) -
A person of mass 60 kg wants to lose 5 kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1kg of fat is burnt on expending 7000 kcal calories, how many times must he go up and down to reduce his weight by 5 kg?
(a) -
In a refrigerator, one removes heat from a lower temperature and deposits to the surroundings at a higher temperature. In this process, mechanical work has to be done, which is provided by an electric motor. If the motor is of 1kW power and heat is transferred from -3°C to 27°C. Find the heat taken out of the refrigerator per second assuming its efficiency is 50% of a perfect engine.
(a) -
We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state? (Hydrogen molecules can be consider as spheres of radius 1 \(\overset { o }{ A }\)).
(a) -
A tuning fork A, marked 512 Hz, produces 5 beats per sec, where sounded with another unmarked tuning fork B. If B is loaded with wax, the number of beats is again 5 per sec. What is the frequency of the tuning fork B when not loaded?
(a) -
Equation of a plane progressive wave is given by y = 0.6 sin\(2\pi \left( t-\frac { x }{ 2 } \right) \) On reflection from a denser medium, its amplitude becomes 2/3 of the amplitude of incident wave. What will be equation of reflected wave?
(a) -
At what temperature (in 0C) Will be speed of sound air be 3 times its value at 00 C?
(a) -
A sitar wire is replaced by another wire of same length and material but of three times the earlier radius. If the tension in the wire remains the same, then by what factor will the frequency change?
(a) -
You have learnt that a travelling wave in one dimension is represented by a function y = f (x, t) where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave :
(i) (x - vt) 2
(ii) log [(x + vt)/x0]
(iii) 1/(x + vt)(a) -
You have learnt that a travelling wave in one dimension is represented by a function y = f(x,t) where, x and t must appear in the combination x- vt or x + vt, i.e. y = f( x \(\pm \) vt ). Is the converse true?
(a) Examine if the following functions for Y can possibly represent a travelling wave
(b) Examine if the following functions for Y can possibly represent a travelling wave (x - vt)2(a)