CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 3 Mark Questions With Solution 2021
By QB365
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 3 Mark Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Find all vectors of magnitude 10\(\sqrt { 3 }\) that are perpendicular to the plane of:
\(\overset { \wedge }{ i } +2\overset { \wedge }{ j } +\overset { \wedge }{ k } \ and\ -\overset { \wedge }{ i } +3\overset { \wedge }{ j } +4\overset { \wedge }{ k } \)(a) -
Using vector, find the value of 'k' such that the point: (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
(a) -
If A,B,C are position vectors: \(\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, \hat{i}-2 \hat{j}+\hat{k}\)
Respectively, find the projection of \(\overset { \rightarrow }{ AB } \) along \(\overset { \rightarrow }{ CD } \).(a) -
If A and B are two points vectors and respectively. write the position vectors of a point of a P, which divides the line segment AB internally in the ratio 1 : 2
(a) -
If \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are perpendicular vectors, \(|\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } |=13\) and \(|\overset { \rightarrow }{ a }|\) = 5, then find the value of |\(\overset { \rightarrow }{ b } \)|.
(a) -
If \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are two unit vectorssuch that \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \) is also a unit vector, then find the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \).
(a) -
Lagrange's identify prove that : \({( }{ \overrightarrow { a } *\overrightarrow { b) } }^{ 2 }=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } -{ ( }{ \overrightarrow { a } .\overrightarrow { b) } }^{ 2 }\)
(a) -
Find the volume of parallelopiped whose sides are given by vectors: \(2\overset { \wedge }{ i } -3\overset { \wedge }{ j } +4\overset { \wedge }{ k } ,\overset { \wedge }{ i } +2\overset { \wedge }{ j } -\overset { \wedge }{ k } and3\overset { \wedge }{ i } -\overset { \wedge }{ j } +2\overset { \wedge }{ k } \)
(a) -
Prove that:\(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } +\overset { \rightarrow }{ a } ]=2[\overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] \)
(a) -
Show that the vector \(\overset { \rightarrow }{ a } \), \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \) are coplanar if \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } \ and \ \overset { \rightarrow }{ c } +\overset { \rightarrow }{ a } \) are coplanar.
(a)
3 Marks