CBSE 10th Standard Maths Subject Coordinate Geometry Ncert Exemplar 2 Marks Questions With Solution 2021
By QB365 on 26 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 10 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 10th Standard Maths Subject Coordinate Geometry Ncert Exemplar 2 Marks Questions With Solution 2021
10th Standard CBSE
-
Reg.No. :
Maths
-
Name the type of triangle formed by the points A(-5, 6), B(-4, 2) and C(7, 5).
(a) -
Find the value of m if the points (5, 1), (-2, -3) and (8, 2m) are collinear.
(a) -
The points A(2, 9), B(a, 5) and C(5, 5) Are the vertices of \(\triangle ABC\) right angled at B. Find the value of a and hence the area of \(\triangle ABC\).
(a) -
Name the type of triangle PQR formed by the points \(P(\sqrt { 2 } ,\sqrt { 2 } ),Q(-\sqrt { 2 } ,-\sqrt { 2 } )\) and \(R(-\sqrt { 6 } ,\sqrt { 6 } )\)
(a) -
Show that \(\Delta \)ABC with vertices A(-2, 0), B(0, 2) and C(2,0) is similar to \(\Delta \)DFE with vertices D(- 4, 0), E(4, 0) and F(0, 4).
(a) -
Find the area of a triangle with vertices (a, b +c), (b, c + a) and (c, a + b).
(a) -
Check, whether the points (-4, 0), (4, 0) and (0, 3) are the vertices of an isosceles triangle or equilateral triangle.
(a) -
Show that the points A (-6, 10), B(-4, 6) and C(3, -8) are collinear, such that \(AB=\frac { 2 }{ 9 } AC\) .
(a) -
Find the angle subtended by these points \(P\left( \sqrt { 2 } ,\sqrt { 2 } \right) ,Q(-\sqrt { 2 } ,-\sqrt { 2 } )\text {and} R(-\sqrt { 6 } ,\sqrt { 6 } ).\)
(a) -
Find the perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0).
[Hint The perimeter of a triangle is the sum of lengths of its three sides, so first find the length of three sides and then add them.](a)
2 Marks
*****************************************
CBSE 10th Standard Maths Subject Coordinate Geometry Ncert Exemplar 2 Marks Questions With Solution 2021 Answer Keys
-
scalene triangle
-
\(m=\frac { 19 }{ 14 } \)
-
\(a=2,\ OR\ \left( \triangle ABC \right) =6\ sq.units\)
-
We have P(\(\sqrt{2}\) , \(\sqrt{2}\)) , Q(-\(\sqrt{2}\),-\(\sqrt{2}\)) and R(-\(\sqrt{6}\),\(\sqrt{6}\))
\(\therefore\) PQ = \(\sqrt { \left( \sqrt { 2 } +\sqrt { 2 } \right) ^{ 2 }+\left( \sqrt { 2 } +\sqrt { 2 } \right) ^{ 2 } } \)
\(=\sqrt { \left( 2\sqrt { 2 } \right) ^{ 2 }+\left( 2\sqrt { 2 } \right) ^{ 2 } } \)
\(=\sqrt { 4\times 2+4\times 2 } =\sqrt { 8+8 } \)
\(=\sqrt { 16 } \)=4 units
PR = \(\sqrt { \left( \sqrt { 2 } +\sqrt { 6 } \right) ^{ 2 }+\left( \sqrt { 2 } +\sqrt { 6 } \right) ^{ 2 } } \)
\(=\sqrt { 2+6+2\sqrt { 2 } +2+6-2\sqrt { 2 } } \)
\(=\sqrt { 2+6+2+6 } \)
\(=\sqrt { 16 } \) = 4 units
RQ = \(\sqrt { [(-\sqrt { 2 } )+\sqrt { 6 } ^{ 2 }+\left( -\sqrt { 2 } -\sqrt { 6 } \right) ^{ 2 } } \)
\(=\sqrt { 2+6-2\sqrt { 2 } +2+6+2\sqrt { 2 } } \)
\(=\sqrt { 2+6+2+6 } \)
\(=\sqrt { 16 } \) =4 units
Since PQ=PR=RQ = 4 units
∴ PQR is an equilateral triangle. -
Given, vertices of \(\Delta \)ABC are A(-2, 0), B(0, 2) and C(2,0) and D(- 4, 0), E(4, 0) and F(0, 4).
Now, AB = \(\sqrt { { (0+2) }^{ 2 }+{ (2-0) }^{ 2 } } =\sqrt { 4+4 } =2\sqrt { 2 } \) units [\(\because \) distance=\(\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right) }^{ 2 }-{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) }^{ 2 } } \)]
BC = \(\sqrt { { (2-0) }^{ 2 }+{ (0-2) }^{ 2 } } \) \( =\sqrt { 4+4 } =2\sqrt { 2 } \) units
CA = \(\sqrt { { (-2-2) }^{ 2 }+{ (0-0) }^{ 2 } } \) = \(\sqrt { { (-4) }^{ 2 }+0 } \)= 4 units
FD = \(\sqrt { { (0+4) }^{ 2 }+{ (4-0) }^{ 2 } } \) = \(\sqrt { { (4) }^{ 2 }+{ (-4) }^{ 2 } } \) = \(4\sqrt { 2 } \) units
FE = \(\sqrt { { (4-0) }^{ 2 }+{ (0-4) }^{ 2 } } \) = \(\sqrt { { (4) }^{ 2 }+{ (-4) }^{ 2 } } \) = \(4\sqrt { 2 } \) units
and ED = \(\sqrt { { (-4-4) }^{ 2 }+{ (0-0) }^{ 2 } } \) = \(\sqrt { { (-8) }^{ 2 }} \) = \(\sqrt { {64} }\) = 8 units
Here, we see that sides of \(\Delta \) DEF are twice the sides of \(\Delta \)ABC.
Hence, both the triangle are similar.
Hence proved. -
Here, (x1, y1) = (a, b + c), (x2, y2) = (b,c + a) and (x3, y3) = (c, a + b)
Now, area of a triangle
=\(\frac { 1 }{ 2 } \)[x1y2 + x2y3 + x3y1 - x1y3 - x2y1 - x3y2]
=\(\frac { 1 }{ 2 } \)[a(c + a) + b(a + b) + c(b + c)-a(a + b) - b(b + c) - c(c + a)]
=\(\frac { 1 }{ 2 } \)[ac + a2 + ba + b2 + cb + c2 - a2 - ab - b2 - bc - c2 - ca]
=\(\frac { 1 }{ 2 } \)(0) = 0
Hence, the area of a triangle with vertices (a,b + c), (b, c + a) and (c, a + b) is zero. -
Let A = (x1,y1) = (-4, 0), B = (x2,y2) = (4, 0) and C = (x3, y3) = (0, 3)
Now, AB = \(\sqrt { { [4-(-4)] }^{ 2 }+{ (0-0) }^{ 2 } } \) [ using distance formula ]
\(=\sqrt { { (4+4) }^{ 2 } } =\sqrt { { 8 }^{ 2 } } =8\quad units\)
\(BC=\sqrt { (0-4{ ) }^{ 2 }+{ (3-0) }^{ 2 } } =\sqrt { { (-4) }^{ 2 }+{ (3) }^{ 2 } } \)
\(=\sqrt { 16+9 } =\sqrt { 25 } =5\quad units\)
and AC \(=\sqrt { [0-(-4){ ] }^{ 2 }+(3-0{ ) }^{ 2 } } \)
\(=\sqrt { 16+9 } =\sqrt { 25 } =5\quad units\)
\(\because BC = AC\)
So, \(\triangle \) ABC is an isosceles triangle. -
Here, coordinates of \(A\equiv ({ x }_{ 1 },{ y }_{ 2 })\) = (-6, 10),
Coordinates of B \(\equiv \) (x2, y2) = (-4, 6) and
Coordinates of C \(\equiv \) (x3, y3) = (3, -8).
We know that,
Area of triangle = \(\frac { 1 }{ 2 } \left| { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right| \)
\(\therefore\) Area of \(\Delta ABC\) = \(\frac { 1 }{ 2 } \left| -6\{ 6-(-8)\} +(-4)(-8-10)+3(10-6) \right| \)
\(=\frac { 1 }{ 2 } \left| -6(14)+(-4)(-18)+2(4) \right| \)
\(=\frac { 1 }{ 2 } \left| -84+72+12 \right| =0\)
Since, area of \(\Delta ABC\) is zero. So, points A, B and C are collinear.
Now, \(AB=\sqrt { { (-4+6) }^{ 2 }+{ (6-10) }^{ 2 } } \)
[ using distance formula ]
\(=\sqrt { { 2 }^{ 2 }+{ (-4) }^{ 2 } } =\sqrt { 4+16 } =\sqrt { 20 } \)
\(=2\sqrt { 5 } units\)
\(AC=\sqrt { ({ 3+6) }^{ 2 }+(-8-10)^{ 2 } } \)
\(=\sqrt { { 9 }^{ 2 }+({ -18 })^{ 2 } } =\sqrt { 81+324 } \)
\(=\sqrt { 405 } =\sqrt { 81\times 5 } =9\sqrt { 5 } units\)
\(\therefore \quad AB=2\sqrt { 5 } \times \frac { 9 }{ 9 } =\frac { 2 }{ 9 } AC\)
Hence proved. -
Hint : First find the type of triangle using distance formula and hence obtain the angles.
Ans. 60°, equilateral triangle.Hint : First find the type of triangle using distance formula and hence obtain the angles.
Ans. 60°, equilateral triangle. -
It is clear from the figure that,
Perimeter of \(\Delta\)AOB
=Distance (AO) + Distance (OB) + Distance (AB)
\(=\sqrt { { (0-0) }^{ 2 }+{ (4-0) }^{ 2 } } +\sqrt { { (0-3) }^{ 2 }+{ (0-0) }^{ 2 } } +\sqrt { { (0-3) }^{ 2 }+{ (4-0) }^{ 2 } } \)
[ using distance formula]
\(=\sqrt { { ({ x }_{ 1 }-{ x }_{ 2 }) }^{ 2 }+{ ({ y }_{ 1 }-{ y }_{ 2 }) }^{ 2 } } \)
\(=\sqrt { { (4) }^{ 2 } } +\sqrt { { (3) }^{ 2 } } +\sqrt { 9+16 } \)
= 4+3+\(\sqrt { 25 } \) = 4 + 3 + 5 = 12 units
Hence, the perimeter of given triangle is 12 units.
2 Marks