CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 1 Marks Questions With Solution 2021
By QB365 on 26 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 10 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 1 Marks Questions With Solution 2021
10th Standard CBSE
-
Reg.No. :
Maths
-
Given that \(\sin { \alpha } =\frac { 1 }{ 2 } \) and \(\cos { \beta } =\frac { 1 }{ 2 } ,\) what is the value of \((\alpha +\beta )?\)
(a)\(sin\ \alpha =\frac { 1 }{ 2 } and\ cos\ \beta =\frac { 1 }{ 2 }\)
\( \\ \Rightarrow d sin\ \alpha =sin\ 30°\left[ \because \ sin\ 30°=\frac { 1 }{ 2 } \right] \ \)
\(\ and\ cos\ \beta \ =\ cos\ 60°\ \left[ \because \ cos\ 60°=\frac { 1 }{ 2 } \right] \)
\(\\ \Rightarrow \ \alpha \ =\ 30°\ and\ \ beta \ = \ 60°\)
\(\\ \therefore \ \alpha \ +\ \beta \ =\ 30°+60°=90°\) -
If \(\cos { 9\alpha } =\sin { \alpha } \) and \(9\alpha <{ 90 }^{ 0 },\) find the value of \(\tan { 5\alpha } .\)
(a)1
-
Prove \((\tan { \theta } +2)(2\tan { \theta } +1)=5\tan { \theta } +2\sec ^{ 2 }{ \theta } .\)
(a)LHS=\((\tan { \theta } +2)(2\tan { \theta } +1)\)
\(=2\tan ^{ 2 }{ \theta } +4\tan { \theta } +\tan { \theta } +2\)
\(=2\tan ^{ 2 }{ \theta } +2+5\tan { \theta } \)
\(=2(\tan ^{ 2 }{ \theta } +1)+5\tan { \theta } \)
\(=2\sec ^{ 2 }{ \theta } +5\tan { \theta } \quad \left[ \because 1+\tan ^{ 2 }{ \theta } =\sec ^{ 2 }{ \theta } \right] \)
\(=5\tan { \theta } +2\sec ^{ 2 }{ \theta } \)=RHS
Hence proved. -
Find the value of \(\left[ \frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\sin ^{ 2 }{ { 68 }^{ 0 } } }{ \cos ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\sin { { 27 }^{ 0 } } \cos { { 63 }^{ 0 } } \right] .\)
(a)\(\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\sin ^{ 2 }{ { 68 }^{ 0 } } }{ \cos ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\sin { { 27 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +[\sin { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } }{ [\cos { { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 }] } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \sin { { ({ ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 22 }^{ 0 } } }{ \sin ^{ 2 }{ { 68 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { 1 }{ 1 } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos ^{ 2 }{ { 63 }^{ 0 } } \)
\(=1+1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \) -
If \(\cos { A } +\cos ^{ 2 }{ A } =1,\) find the value of \(\sin ^{ 2 }{ A } +\sin ^{ 4 }{ A } .\)
(a)Given, \(\cos { A } +\cos ^{ 2 }{ A } =1\quad \Rightarrow \cos { A } =1-\cos ^{ 2 }{ A } \)
\(\Rightarrow \quad \cos { A } =\sin ^{ 2 }{ A } \quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(\Rightarrow \quad \cos ^{ 2 }{ A } =\sin ^{ 4 }{ A } \)
On adding \(\sin ^{ 2 }{ A } \) in Eq, (i) both sides, we get
\(\sin ^{ 2 }{ A } +\sin ^{ 4 }{ A } =\sin ^{ 2 }{ A } +\cos ^{ 2 }{ A } \)
\(=1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
1 Marks
*****************************************
CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 1 Marks Questions With Solution 2021 Answer Keys
-
\(sin\ \alpha =\frac { 1 }{ 2 } and\ cos\ \beta =\frac { 1 }{ 2 }\)
\( \\ \Rightarrow d sin\ \alpha =sin\ 30°\left[ \because \ sin\ 30°=\frac { 1 }{ 2 } \right] \ \)
\(\ and\ cos\ \beta \ =\ cos\ 60°\ \left[ \because \ cos\ 60°=\frac { 1 }{ 2 } \right] \)
\(\\ \Rightarrow \ \alpha \ =\ 30°\ and\ \ beta \ = \ 60°\)
\(\\ \therefore \ \alpha \ +\ \beta \ =\ 30°+60°=90°\)\(sin\ \alpha =\frac { 1 }{ 2 } and\ cos\ \beta =\frac { 1 }{ 2 }\)
\( \\ \Rightarrow d sin\ \alpha =sin\ 30°\left[ \because \ sin\ 30°=\frac { 1 }{ 2 } \right] \ \)
\(\ and\ cos\ \beta \ =\ cos\ 60°\ \left[ \because \ cos\ 60°=\frac { 1 }{ 2 } \right] \)
\(\\ \Rightarrow \ \alpha \ =\ 30°\ and\ \ beta \ = \ 60°\)
\(\\ \therefore \ \alpha \ +\ \beta \ =\ 30°+60°=90°\) -
1
1
-
LHS=\((\tan { \theta } +2)(2\tan { \theta } +1)\)
\(=2\tan ^{ 2 }{ \theta } +4\tan { \theta } +\tan { \theta } +2\)
\(=2\tan ^{ 2 }{ \theta } +2+5\tan { \theta } \)
\(=2(\tan ^{ 2 }{ \theta } +1)+5\tan { \theta } \)
\(=2\sec ^{ 2 }{ \theta } +5\tan { \theta } \quad \left[ \because 1+\tan ^{ 2 }{ \theta } =\sec ^{ 2 }{ \theta } \right] \)
\(=5\tan { \theta } +2\sec ^{ 2 }{ \theta } \)=RHS
Hence proved.LHS=\((\tan { \theta } +2)(2\tan { \theta } +1)\)
\(=2\tan ^{ 2 }{ \theta } +4\tan { \theta } +\tan { \theta } +2\)
\(=2\tan ^{ 2 }{ \theta } +2+5\tan { \theta } \)
\(=2(\tan ^{ 2 }{ \theta } +1)+5\tan { \theta } \)
\(=2\sec ^{ 2 }{ \theta } +5\tan { \theta } \quad \left[ \because 1+\tan ^{ 2 }{ \theta } =\sec ^{ 2 }{ \theta } \right] \)
\(=5\tan { \theta } +2\sec ^{ 2 }{ \theta } \)=RHS
Hence proved. -
\(\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\sin ^{ 2 }{ { 68 }^{ 0 } } }{ \cos ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\sin { { 27 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +[\sin { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } }{ [\cos { { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 }] } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \sin { { ({ ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 22 }^{ 0 } } }{ \sin ^{ 2 }{ { 68 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { 1 }{ 1 } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos ^{ 2 }{ { 63 }^{ 0 } } \)
\(=1+1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)\(\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\sin ^{ 2 }{ { 68 }^{ 0 } } }{ \cos ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\sin { { 27 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +[\sin { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } }{ [\cos { { { ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 }] } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \sin { { ({ ({ 90 }^{ 0 }-{ 22 }^{ 0 }) }]^{ 2 } } } \)
\(=\frac { \sin ^{ 2 }{ { 22 }^{ 0 } } +\cos ^{ 2 }{ { 22 }^{ 0 } } }{ \sin ^{ 2 }{ { 68 }^{ 0 } } +\cos ^{ 2 }{ { 68 }^{ 0 } } } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos { { 63 }^{ 0 } } \cos { { 63 }^{ 0 } } \)
\(=\frac { 1 }{ 1 } +\sin ^{ 2 }{ { 63 }^{ 0 } } +\cos ^{ 2 }{ { 63 }^{ 0 } } \)
\(=1+1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \) -
Given, \(\cos { A } +\cos ^{ 2 }{ A } =1\quad \Rightarrow \cos { A } =1-\cos ^{ 2 }{ A } \)
\(\Rightarrow \quad \cos { A } =\sin ^{ 2 }{ A } \quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(\Rightarrow \quad \cos ^{ 2 }{ A } =\sin ^{ 4 }{ A } \)
On adding \(\sin ^{ 2 }{ A } \) in Eq, (i) both sides, we get
\(\sin ^{ 2 }{ A } +\sin ^{ 4 }{ A } =\sin ^{ 2 }{ A } +\cos ^{ 2 }{ A } \)
\(=1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)Given, \(\cos { A } +\cos ^{ 2 }{ A } =1\quad \Rightarrow \cos { A } =1-\cos ^{ 2 }{ A } \)
\(\Rightarrow \quad \cos { A } =\sin ^{ 2 }{ A } \quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(\Rightarrow \quad \cos ^{ 2 }{ A } =\sin ^{ 4 }{ A } \)
On adding \(\sin ^{ 2 }{ A } \) in Eq, (i) both sides, we get
\(\sin ^{ 2 }{ A } +\sin ^{ 4 }{ A } =\sin ^{ 2 }{ A } +\cos ^{ 2 }{ A } \)
\(=1\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
1 Marks