CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 2 Marks Questions 2021
By QB365 on 26 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 10 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 2 Marks Questions 2021
10th Standard CBSE
-
Reg.No. :
Maths
-
If \(\sin ^{ 2 }{ \theta } -\cos ^{ 2 }{ \theta } =2,\) find the value of \(\theta\)
(a) -
Prove that \(\sqrt { \sec ^{ 2 }{ \theta } +{ cosec }^{ 2 }\theta } =\tan { \theta } +\cot { \theta } .\)
(a) -
If cos 9 \(\alpha\) = sin \(\alpha\) and value of tan 5 \(\alpha\) is 9 \(\alpha\) < 90°, then the
(a) -
If sin \(\theta\) + 2 cos \(\theta\) = 1. prove that 2 sin \(\theta\) - cos \(\theta\) = 2.
(a) -
If 1 + sin2 \(\theta\) = 3 sin \(\theta\) cos \(\theta\), prove that \(\tan \theta=1 \text { or } \frac{1}{2}\)
(a)
2 Marks
*****************************************
CBSE 10th Standard Maths Subject Introduction to Trigonometry Ncert Exemplar 2 Marks Questions 2021 Answer Keys
-
Given, \(\sin ^{ 2 }{ \theta } -\cos ^{ 2 }{ \theta } =2\)
\(\Rightarrow \quad 2\sin ^{ 2 }{ \theta } -(1-\sin ^{ 2 }{ \theta } )=2\quad \left[ \because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(\Rightarrow \quad 2\sin ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } -1=2\)
\(\Rightarrow \quad 3\sin ^{ 2 }{ \theta } =3\Rightarrow \sin ^{ 2 }{ \theta } =1\Rightarrow \sin { \theta } =1\)
\(\Rightarrow \sin { \theta } =1=\sin { { 90 }^{ 0 } } \quad \left[ \because \sin { { 90 }^{ 0 } } =1 \right] \)
\(\therefore \quad \theta ={ 90 }^{ 0 }\) -
LHS = \(\sqrt { \sec ^{ 2 }{ \theta } +{ cosec }^{ 2 }\theta } =\sqrt { \frac { 1 }{ \cos ^{ 2 }{ \theta } } +\frac { 1 }{ \sin ^{ 2 }{ \theta } } } \)
\(=\sqrt { \frac { \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } }{ \cos ^{ 2 }{ \theta } \sin ^{ 2 }{ \theta } } } =\sqrt { \frac { 1 }{ \cos ^{ 2 }{ \theta } \sin ^{ 2 }{ \theta } } } \)
\(=\frac { 1 }{ \sin { \theta } \cos { \theta } } \left[ \therefore \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(=\frac { \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } }{ \sin { \theta } \cos { \theta } } \left[ \therefore \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1 \right] \)
\(=\frac { \sin ^{ 2 }{ \theta } }{ \sin { \theta } \cos { \theta } } +\frac { \cos ^{ 2 }{ \theta } }{ \sin { \theta } \cos { \theta } } =\frac { \sin { \theta } }{ \cos { \theta } } +\frac { \cos { \theta } }{ \sin { \theta } } \)
\(=\tan { \theta } +\cot { \theta } \)
= RHS -
cos9 \(\alpha\) = sin \(\alpha\)
\(\Rightarrow \sin \left(90^{\circ}-9 \alpha\right)=\sin \alpha\) \(\left[\because \cos \theta=\sin \left(90^{\circ}-\theta\right)\right]\)
90°- 90 \(\alpha\) = \(\alpha\) \(\left[\because 9 \alpha<90^{\circ} \text { i. e. acute angle }\right]\)
\(\Rightarrow \quad 10 \alpha=90^{\circ} \Rightarrow \alpha=9^{\circ}\)
Hence, find tan 5\(\alpha\)
= 1 -
Given, sin \(\theta\) + 2 cos \(\theta\) = 1
On squaring both sides we get,
\(\sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cos \theta=\sin ^{2} \theta+\cos ^{2} \theta\)
\(\Rightarrow \sin ^{2} \theta+4 \cos ^{2} \theta=\sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cos \theta\)
\(\Rightarrow 4 \sin ^{2} \theta+4 \cos ^{2} \theta=4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cos \theta\) [\(\therefore\) adding 3 sin 2 \(\theta\) both sides]
\(\Rightarrow 4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=(2 \sin \theta-\cos \theta)^{2}\) -
Given, \(1+\sin ^{2} \theta=3 \sin \theta \cos \theta\)
\(\Rightarrow \sec ^{2} \theta+\tan ^{2} \theta=3 \tan \theta\)
\(\Rightarrow 2 \tan ^{2} \theta-3 \tan \theta+1=0\) \(\left[\because \sec ^{2} \theta=1+\tan ^{2} \theta\right]\) [dividing both sides by cos2\(\theta\)]
Let, tan \(\theta\) = x, so above equation becomes 2x2 - 3x + 1. Solve for x = tan \(\theta\) using quadratic formula.
2 Marks