CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations HOT Questions 4 Mark Questions With Solution 2021
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations HOT Questions 4 Mark Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
If z is a complex number such that \(|z-1|=|z+1|\) then show that Re(z) = 0.
(a) -
Find the modulus and argument of \(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } }\)
(a) -
If (1+i)(1+2i)(1+3i)...(1+ni)=(x+iy), then show that 2.5.10....(1+n2)=x2+y2
(a) -
Find the value of x and y, if \(\frac { \left( 1+i \right) x-2i }{ 3+i } +\frac { \left( 2-3i \right) y+i }{ 3-i } =i\)
(a) -
Find the value of \({ 2x }^{ 4 }+{ 5x }^{ 3 }+{ 7x }^{ 2 }-x+41,when\ x=-2-\sqrt { 3i } \)
(a)
*****************************************
CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations HOT Questions 4 Mark Questions With Solution 2021 Answer Keys
-
Let z = x + iy, then \(|z-1|=|z+1|\)
\(\Rightarrow \left| x+iy-1 \right| =\left| x+iy+1 \right| \)
\(\Rightarrow \left| (x-1)+iy \right| =\left| (x+1)-iy \right| \)
\(\Rightarrow\sqrt { (x-1)^{ 2 }+{ y }^{ 2 } } =\sqrt { (x+1)^{ 2 }+{ y }^{ 2 } } \)
\(\Rightarrow (x-1)^{ 2 }+{ y }^{ 2 }=(x+1)^{ 2 }+{ y }^{ 2 }\)
\(\Rightarrow { x }^{ 2 }+1-2x={ x }^{ 2 }+1+2x\Rightarrow 4x=0\Rightarrow x=0\)
\(\therefore \quad Re(z)=0\) -
We have, \(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } }\)
\(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } } x\frac { (1+i{ ) }^{ 7 } }{ (1+i{ ) }^{ 7 } } \)
\([by\quad rationalising\quad the\quad denominator]\)
\(=\frac { (1+i{ ) }^{ 20 } }{ (1-{ i }^{ 2 }{ ) }^{ 7 } } =\frac { (1+i{ ) }^{ 20 } }{ (1+1{ ) }^{ 7 } } =\frac { (1+i{ ) }^{ 20 } }{ 2^{ 7 } } =\frac { 1 }{ 2^{ 7 } } (1+i{ ) }^{ 20 }\)
\( \frac { 1 }{ 2^{ 7 } } [(1+i{ )^{ 2 }] }^{ 10 }=\frac { 1 }{ 2^{ 7 } } (1+2i+{ i }^{ 2 }{ ) }^{ 10 }\)
\(\frac { 1 }{ 2^{ 7 } } (2i{ ) }^{ 10 }=\frac { (2{ ) }^{ 10 } }{ 2^{ 7 } } (i{ ) }^{ 10 }=(2{ ) }^{ 3 }({ i }^{ 2 })^{ 5 }=8(-1{ ) }^{ 5 }\)
\(z=-8\)
\(|z=\sqrt { (-8{ ) }^{ 2 } } =\sqrt { { 8 }^{ 2 } } =8\)
and arg(z) = \(\pi \) [z lies on negative X-axis] -
\(\left| (1+i)(1+2i)(1+3i)....(1+ni) \right| =\left| x+iy \right| \)
\(\Rightarrow \left| 1+i \right| \left| 1+2i \right| \left| 1+3i \right| ....\left| 1+ni \right| =\left| x+iy \right| \)
\(\Rightarrow \sqrt { 1+1 } \sqrt { 1+4 } \sqrt { 1+9 } ....\sqrt { 1+{ n }^{ 2 } } =\sqrt { { x }^{ 2 }+{ y }^{ 2 } }\)
\( \Rightarrow \sqrt { 2 } \sqrt { 5 } \sqrt { 10 } ....\sqrt { 1+{ n }^{ 2 } } =\sqrt { { x }^{ 2 }+{ y }^{ 2 } } \) -
Given \(\frac { \left( 1+i \right) x-2i }{ 3+i } +\frac { \left( 2-3i \right) y+i }{ 3-i } =i\)
\(\Rightarrow \frac { x+\left( x-2 \right) i }{ 3+i } +\frac { 2y+\left( 1-3y \right) i }{ 3-i } =i\)
\(\Rightarrow \frac { \left[ x+\left( x-2 \right) i \right] \left( 3-i \right) +\left[ 2y+\left( 1-3y \right) i \right] \left( 3+i \right) }{ \left( 3+i \right) \left( 3-i \right) } =i\)
\(\Rightarrow \left( 4x+9y-3 \right) +i\left( 2x-7y-3 \right) =10i\)
\(\Rightarrow 4x+9y-3=0\quad and\quad 2x-7y-3=10\)
\(Ans.\ x=3\ and \ y=-1\) -
We have. \(x=-2-\sqrt { 3i } \)
\(\Rightarrow x=-2-\sqrt { 3i } \)
On squaring both sides, we get
\((x+2)^{2}=(-\sqrt{3} i)^{2} \Rightarrow x^{2}+4+4 x=3 i^{2}\)
\(\left[\because\left(z_{1}+z_{2}\right)^{2}=z_{1}^{2}+z_{2}^{2}+2 z_{1} z_{2}\right]\)
\(\Rightarrow \ x^{2}+4 x+4=-3 \quad\left[\because i^{2}=-1\right]\)
\(\Rightarrow \ x^{2}+4 x+7=0\)
Now divide \(2 x^{4}+5 x^{3}+7 x^{2}-x+41 \text { by } x^{2}+4 x+7\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 x^{2}-3 x+5 \\ x ^ { 2 } + 4 x + 7 \sqrt { 2 x ^ { 4 } + 5 x ^ { 3 } + 7 x ^ { 2 } - x + 4 1 } \)
\(\begin{aligned} 2 x^{4}+8 x^{3}+14 x^{2} \\ \frac{- \ -}{-3 x^{3}-7 x^{2}-x+41} \end{aligned}\)
\(\begin{aligned} 3 x^{3}-12 x^{2}-21 x^{} \\ \frac{+ \ + \ +}{5 x^{2}+20 x+35} \end{aligned}\)
\(\begin{aligned} {5 x^{2}+20 x+35} \\ \frac{- \ - \ -} {6} \end{aligned}\)
Thus, \({ 2x }^{ 4 }+{ 5x }^{ 3 }+{ 7x }^{ 2 }-x+41\)
\(=\left( { x }^{ 2 }+4x+7 \right) ({ 2x }^{ 2 }-3x+5)+6\)
\([\because dividend=quotient\times divisor+remainder]\)
\(=0\times (({ 2x }^{ 2 }-3x+5)+6=6\quad [\because { x }^{ 2 }+4x+7=0]\)