CBSE 11th Standard Maths Subject HOT Questions 4 Mark Questions 2021 Part - II
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject HOT Questions 4 Mark Questions 2021 Part - II
11th Standard CBSE
-
Reg.No. :
Mathematics
-
Out of 100 students, 15 passed in English, 12 passed in Mathematics, 8 in Science, 4 in English and Science, 4 in all the three.Find how many students passed in English and Mathematics but not in Science?
(a) -
If tan(πcosθ)=cot(πsinθ) then prove that \(cos\left( \theta -\frac { \pi }{ 4 } \right) =\pm \frac { 1 }{ 2\sqrt { 2 } } .\)
(a) -
If \(cos \left( \theta +\phi \right) = m\quad cos\quad \left( \theta -\phi \right) \)then find the value of \(\frac { 1-m }{ 1+m } cot\quad \phi .\)
(a) -
Find the modulus and argument of \(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } }\)
(a) -
If (1+i)(1+2i)(1+3i)...(1+ni)=(x+iy), then show that 2.5.10....(1+n2)=x2+y2
(a)
*****************************************
CBSE 11th Standard Maths Subject HOT Questions 4 Mark Questions 2021 Part - II Answer Keys
-
n(E)=15,n(M)=12,n(s)=8,\(n(E\cap M)=6\)
\(n(M\cap S)=7,n(E\cap S)=4,n(E\cap M\cap S)=4\)
(i)\(n(E\cap M\cap \overline { S } )=n(E\cap M)-n(E\cap M\cap S)\)
=6-4=2 -
\(\frac { sin\quad (\pi \quad cos\quad \theta ) }{ cos\quad (\pi \quad sin\quad \theta ) } =\frac { cos\quad (\pi \quad sin\quad \theta ) }{ sin\quad \left( \pi \quad sin\quad \theta \right) }\)
\(\Rightarrow cos\quad \left( \pi \quad cos\quad \theta \quad +\quad \pi \quad sin\quad \theta \right) =0\)
\(\Rightarrow cos\quad \theta \quad +\quad sin\quad \theta \quad =\quad \pm \frac { 1 }{ 2 }\)
\( \Rightarrow cos\quad \theta \quad cos\quad \frac { \pi }{ 4 } +sin\quad \theta \quad sin\quad \frac { \pi }{ 4 } =\pm \frac { 1 }{ 2\sqrt { 2 } } \)
\(\therefore \quad cos\left( \theta -\frac { \pi }{ 4 } \right) =\pm \frac { 1 }{ 2\sqrt { 2 } } \) -
We have, \(cos \left( \theta +\phi \right) = m\quad cos\left( \theta -\phi \right) \)
\(\Rightarrow \frac { 1 }{ m } =\frac { cos\left( \theta -\phi \right) }{ cos\left( \theta +\phi \right) } \)
Now, \(\frac { 1-m }{ 1+m } =\frac { cos\quad \left( \theta -\phi \right) -cos\quad \left( \theta +\phi \right) }{ cos\quad \left( \theta -\phi \right) +cos\left( \theta +\phi \right) } =tan\quad \theta \quad tan\quad \phi \\ \\ \)
Ans. tan \(\theta \). -
We have, \(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } }\)
\(z=\frac { (1+i)^{ 13 } }{ (1+i)^{ 7 } } x\frac { (1+i{ ) }^{ 7 } }{ (1+i{ ) }^{ 7 } } \)
\([by\quad rationalising\quad the\quad denominator]\)
\(=\frac { (1+i{ ) }^{ 20 } }{ (1-{ i }^{ 2 }{ ) }^{ 7 } } =\frac { (1+i{ ) }^{ 20 } }{ (1+1{ ) }^{ 7 } } =\frac { (1+i{ ) }^{ 20 } }{ 2^{ 7 } } =\frac { 1 }{ 2^{ 7 } } (1+i{ ) }^{ 20 }\)
\( \frac { 1 }{ 2^{ 7 } } [(1+i{ )^{ 2 }] }^{ 10 }=\frac { 1 }{ 2^{ 7 } } (1+2i+{ i }^{ 2 }{ ) }^{ 10 }\)
\(\frac { 1 }{ 2^{ 7 } } (2i{ ) }^{ 10 }=\frac { (2{ ) }^{ 10 } }{ 2^{ 7 } } (i{ ) }^{ 10 }=(2{ ) }^{ 3 }({ i }^{ 2 })^{ 5 }=8(-1{ ) }^{ 5 }\)
\(z=-8\)
\(|z=\sqrt { (-8{ ) }^{ 2 } } =\sqrt { { 8 }^{ 2 } } =8\)
and arg(z) = \(\pi \) [z lies on negative X-axis] -
\(\left| (1+i)(1+2i)(1+3i)....(1+ni) \right| =\left| x+iy \right| \)
\(\Rightarrow \left| 1+i \right| \left| 1+2i \right| \left| 1+3i \right| ....\left| 1+ni \right| =\left| x+iy \right| \)
\(\Rightarrow \sqrt { 1+1 } \sqrt { 1+4 } \sqrt { 1+9 } ....\sqrt { 1+{ n }^{ 2 } } =\sqrt { { x }^{ 2 }+{ y }^{ 2 } }\)
\( \Rightarrow \sqrt { 2 } \sqrt { 5 } \sqrt { 10 } ....\sqrt { 1+{ n }^{ 2 } } =\sqrt { { x }^{ 2 }+{ y }^{ 2 } } \)