CBSE 11th Standard Maths Subject HOT Questions 6 Mark Questions With Solution 2021
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject HOT Questions 6 Mark Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
If f(x) = \(\begin{cases} 1+x,-1 \leq x<0 \\ x^{2}-1, \quad 0\end{cases}\)
Then, find f(3), f(-2), f(0), \(f(\frac { 1 }{ 2 } )\), f(2-h) and f(-1+h), where h > 0 is very small.(a) -
Find the domain of the function \(f(x)=\frac { { x }^{ 2 }+2x+1 }{ { x }^{ 2 }-8x+12 } \)
(a) -
If nCr-1 = 36. nCr = 84 and nCr+1 = 126 then find rC2
(a) -
Find \(\lim _{x \rightarrow 0} f(x) \text { and } \lim _{x \rightarrow 1} f(x), \text { where }\)
\(f(x)=\left\{\begin{array}{ll} 2 x+3, & x \leq 0 \\ 3(x+1), & x>0 \end{array}\right.\)(a) -
If 4digit numbers greater than 5000 are randomly formed the digits 0,1,3,5 and 7.What is the probability of forming a number divisible by 5 when the repetition of digits are not allowed?
(a)
*****************************************
CBSE 11th Standard Maths Subject HOT Questions 6 Mark Questions With Solution 2021 Answer Keys
-
f(3) = 6, f(-2) = Not defined, f(0) = Not defined,
\(f(\frac { 1 }{ 2 } )=\frac { -3 }{ 4 } ;\ f(2-h)={ h }^{ 2 }-h+3,f(-1+h)=h\) -
Domain = R - {2, 6}
-
Now solving \(\frac{^nCr-1}{^nCr} \)= \(\frac{36}{34}\)
and \(\frac{^nCr} {^nCr-1}\) = \(\frac{84}{126} \) , we get
r = 3
\(\therefore\) rC2 = 3C2=3
Ans. 3 -
At \(x=0,LHL=\lim _{ x\rightarrow { 0 }^{ - } }{ f\left( x \right) } =\lim _{ h\rightarrow 0 }{ \quad f\left( 0-h \right) } \)
\(\lim _{ h\rightarrow 0 }{ 2(0-h) } =3=3\)
\(RHL=\lim _{ x\rightarrow 0 }{ f\left( x \right) } =\lim _{ h\rightarrow 0 }{ 2(0-h) } =\lim _{ h\rightarrow 0 }{ 3(0+h+1)=3 } \)
\(LHL=\lim _{ x\rightarrow { 1 }^{ - } }{ f\left( x \right) } =\lim _{ h\rightarrow 0 }{ f(1-h) } =\lim _{ h\rightarrow 0 }{ 3(1+h+1)=6 } \)
\(At\quad x=1,RHL=\lim _{ x\rightarrow { 1 }^{ + } }{ f\left( x \right) } =\lim _{ h\rightarrow 0 }{ f(1+h) } =\lim _{ h\rightarrow 0 }{ 3(1+h+1)=6 } \)
Ans. \(\lim _{ x\rightarrow 0 }{ f\left( x \right) } =3\quad and\quad \lim _{ x\rightarrow 1 }{ f\left( x \right) } =6\) -
(a) Thousand's place can be filled in 2 ways(5 or 7).
(b) The remaining 3 places can be filled in 4 x 3 x 2 ways.
Number of 4digits numbers = 2 x 4 x 3 x 2
(c) If the number is divisible by 5 then its units place is either 0 or 5.
(d) If units place is 0, then thousands, place can be filled in 2 ways and other two places can be filled in 3 x 2 ways.
(e) If units place is 5, then thousands place can be filled in 1 way and other two places can be filled in 3 x 2 ways.
Number of 4digits numbers divisible by 3
= 2 x 3 x 2 +1 x 3 x 2
\(=\frac { 3 }{ 8 } \)