CBSE 11th Standard Maths Subject Limits and Derivatives HOT Questions 2 Mark Questions With Solution 2021
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Limits and Derivatives HOT Questions 2 Mark Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
Evaluate \(\lim_ { h\rightarrow 0 } \frac { (a+h)^{ 2 }sin(a+h)-a^{ 2 }sin\quad a }{ h } \)
(a) -
Evaluate \(\lim _{x \rightarrow \pi / 6} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}\)
(a) -
Evaluate \(\lim _{x \rightarrow 2} \frac{x^{2}-x \log x+2 \log x-4}{x-2}\)
(a) -
Evaluate \(\lim_ { x\rightarrow 0 }{ lim } \frac { x\quad tan4x }{ 1-cos4x } \)
(a) -
Evaluate \(\lim_ { x\rightarrow 0 }{ lim } \frac { sin\quad x-2sin\quad 3x+sin\quad 5x }{ x } \)
(a)
*****************************************
CBSE 11th Standard Maths Subject Limits and Derivatives HOT Questions 2 Mark Questions With Solution 2021 Answer Keys
-
\(\lim_{ h\rightarrow 0 } \frac { (a+h)^{ 2 }sin(a+h)-a^{ 2 }sin\quad a }{ h } \)
\(=\lim_ { lim }{ h\rightarrow 0 } \frac { (a^{ 2 }+h^{ 2 }+2ah)[sin \ a\ cos \ h+cos\ a\ sin \ h)-a^{ 2 }sin\quad a }{ h } \)
\(\left[ \because \ sin(C+D)=sinCcosD+CosCsinD \right] \)
\(=\lim_{ h\rightarrow 0 } \left[ \frac { a^{ 2 }sin \ a(cos \ h-1) }{ h } +\frac { a^{ 2 }cos \ a \ sin \ h) }{ h } +(h+2a)(sin \ a \ cos \ h+cos\ a \ sin\ h) \right] \)
\(=\lim_{ h\rightarrow 0 } \left[ \frac { a^{ 2 }sina(-2sin^{ 2 }\frac { h }{ 2 } ) }{ \frac { h^{ 2 } }{ 2 } } .\frac { h }{ 2 } \right] +\overset { lim }{ h\rightarrow 0 } \frac { a^{ 2 }cosasinh }{ h } +\lim_{ h\rightarrow 0 } (h+2a)sin(a+h)\)
\(\left[ \because cosm \ h-1=-2sin^{ 2 } h/2\quad and\quad sinacos\quad h+cosasin\quad h=sin(a+h) \right] \)
\(=a^{ 2 }sin\quad a\times 0+a^{ 2 }\quad cosa(1)+2asina \quad \left[ \because \lim_{ x\rightarrow 0 } \frac { sin\quad x }{ x } =1 \right]\)
\( =a^{ 2 }cos \ a+2asin \ a\) -
\( \lim _{x \rightarrow \pi / 6} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2} \)
\(= \lim _{x \rightarrow \pi / 6} \frac{\operatorname{cosec}^{2} x-1-3}{\operatorname{cosec} x-2} \quad\left[\because \operatorname{cosec}^{2} x-\cot ^{2} x=1\right] \)
\(= \lim _{x \rightarrow \pi / 6} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2} \)
\(= \lim _{x \rightarrow \pi / 6} \frac{(\operatorname{cosec} x-2)(\operatorname{cosec} x+2)}{(\operatorname{cosec} x-2)} \quad[\text { by factorisation }] \)
\(=\lim _{x \rightarrow \pi / 6}(\operatorname{cosec} x+2)\)
\(= \operatorname{cosec} \frac{\pi}{6}+2=2+2=4\) -
\(\lim _{x \rightarrow 2} \frac{x^{2}-x \log x+2 \log x-4}{x-2} \)
\(=\lim _{x \rightarrow 2} \frac{\left(x^{2}-4\right)-\log x(x-2)}{x-2} \)
\(=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)-\log x(x-2)}{(x-2)} \)
\(=\lim _{x \rightarrow 2} \frac{(x-2)[x+2-\log x]}{(x-2)} \)
\(=\lim _{x \rightarrow 2}[x+2-\log x]=2+2-\log 2 \)
\(=4-\log 2\) -
\(\lim_ { x\rightarrow 0 }{ lim } \frac { x\quad tan4x }{ 1-cos4x } =\lim_ { x\rightarrow 0 }{ lim } \frac { x.\frac { sin\quad 4x }{ cos\quad 4x } }{ 1-cos\quad 2.(2x) } \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { x.\frac { sin\quad 4x }{ cos\quad 4x } }{ 1-\left( 1-2{ sin }^{ 2 }2x \right) } \quad [\because \quad cos2\theta =1-2{ sin }^{ 2 }]\)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { x.sin\quad 4x }{ cos\quad 4x.\quad 2\quad { sin }^{ 2 }2x } \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { x.sin\quad 2(2x) }{ cos\quad 4x(2.sin\quad 2x.sin\quad 2x) } \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { x\quad (2\quad sin\quad 2x.cos\quad 2x) }{ (2\quad sin\quad 2x.sin\quad 2x)cos\quad 4x } \quad [\because \quad sin\ 2\theta =2\quad sin\quad \theta \quad cos\quad \theta ]\)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { x.\quad cos\quad 2x }{ (sin\quad 2x).cos\quad 4x } =\lim_ { x\rightarrow 0 }{ lim } \frac { cos\quad 2x }{ cos\quad 4x } .\left( \frac { x }{ sin\quad 2x } \right) \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { 1 }{ \left( \frac { sin\quad 2x }{ x } \times \frac { 2 }{ 2 } \right) } \times \lim_ { x\rightarrow 0 }{ lim } \frac { cos\quad 2x }{ cos\quad 4x } \)
\(=\frac { 1 }{ 2 } \lim_ { x\rightarrow 0 }{ lim } \frac { 1 }{ \left( \frac { sin\quad 2x }{ 2x } \right) } \times \lim_ { x\rightarrow 0 }{ lim } \frac { cos\quad 2x }{ cos\quad 4x } \)
\(=\frac { 1 }{ 2 } \times \frac { 1 }{ 1 } \times \frac { cos\quad 0 }{ cos\quad 0 } =\frac { 1 }{ 2 } \times \frac { 1 }{ 1 } \times \frac { 1 }{ 1 } =\frac { 1 }{ 2 } \quad \left[ \because \lim_{ x\rightarrow 0 }{ lim } \frac { sin\quad \theta }{ \theta } \quad =1 \right] \) -
\(\lim_ { x\rightarrow 0 }{ lim } \frac { sin\quad x-2sin\quad 3x+sin\quad 5x }{ x } \)
\(=\lim_{ x\rightarrow 0 }{ lim } \frac { \left( sin5x\quad +\quad sin\quad x \right) -2sin\quad 3x }{ x } \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { 2sin\left( \frac { 5x+x }{ 2 } \right) cos\left( \frac { 5x-x }{ 2 } \right) -2sin3x }{ x } \)
\( \left[ \because \ sin\ C+sin\ D=2sin\ \left( \frac { C+D }{ 2 } \right) COS\left( \frac { C-D }{ 2 } \right) \right] \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { 2sin3x\quad cos2x-2sin3x }{ x } \)
\(=\lim_ { x\rightarrow 0 }{ lim } \frac { 2sin3x(cos\quad 2x-1) }{ x } \)
\(=\lim_ { x\rightarrow 0 }{ lim } 2\left( \frac { sin\quad 3x }{ 3x } \right) \times 3\left[ \frac { -1(1-cos2x) }{ 1 } \right] \)
\(=-2\times 1\times 3(1-cos\quad 0) \quad \left[ \because \quad \underset { x\rightarrow 0 }{ lim } \frac { sin\quad \theta }{ \theta } \right] \)
\(=-6(1-1)=-6\times 0=0\)