CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions 2021
By QB365 on 27 May, 2021
QB365 Provides the NCERT Exemplar Question Papers for Class 11 Maths , and also provide the detail solution for each and every ncert exemplar papers. Ncert Exemplar papers will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
Show that \(\lim _{ x\rightarrow 4 }{ \frac { |x-4| }{ x-4 } } \)does not exist.
(a) -
If the function f(x) satisfies \(\lim _{ x\rightarrow 1 }{ \frac { f(x)-2 }{ { x }^{ 2 }-1 } } =\pi \), then evaluate \(\lim _{ x\rightarrow 1 }{ f(x) } .\) Use the theorem \(\lim _{ x\rightarrow a }{ \frac { f(x) }{ g(x) } } =\frac { \lim _{ x\rightarrow a }{ f(x) } }{ \lim _{ x\rightarrow a }{ g(x) } } \)and simplify it.
(a) -
Evaluate \(\lim _{x \rightarrow \pi / 6} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1}\) by using factorization method
(a) -
Evaluate \(\lim _{x \rightarrow \pi / 6} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2}\)
(a) -
If \(y=\sqrt { x } +\frac { 1 }{ \sqrt { x } } \) then find \(\frac { dy }{ dx } at\quad x=1\)
(a) -
Evaluate \(\lim_ { x\rightarrow \pi /2 }{ lim } \left( sec \ x-tan \ x \right) .\)
(a) -
Find the derivates of the following function by using first principle.
sin x(a) -
Find the derivates of the following function by using first principle.
sec x(a) -
Find the derivates of the following function by using first principle.
tan x(a) -
Differentiate \(\sqrt{sin x}\) w.r.t. x by first principle method.
(a)
2 Marks
*****************************************
CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions 2021 Answer Keys
-
Given \(\lim _{ x\rightarrow 4 }{ \frac { |x-4| }{ x-4 } } \)
\(LHL=\lim _{ { X\rightarrow 4 }^{ 1 } }{ \frac { -(x-4) }{ x-4 } } =1 \quad \left[ \because |x-4|=-(x-4),x<4 \right] \)
\(RHL=\lim _{ { X\rightarrow 4 }^{ + } }{ \frac { (x-4) }{ x-4 } } =1\quad \left[ \because |x-4|=(x-4),x<4 \right] \) -
Given, \(\lim _{ x\rightarrow 1 }{ \frac { f(x)-2 }{ { x }^{ 2 }-1 } =\pi \Rightarrow } \frac { \lim _{ x\rightarrow 1 }{ [f(x)-2] } }{ \lim _{ x\rightarrow 1 }{ { (x }^{ 2 }-1) } } =\pi\)
\( \Rightarrow \lim _{ x\rightarrow 1 }{ [f(x)-2] } =\pi \quad \lim _{ x\rightarrow 1 }{ { (x }^{ 2 }-1) } \)
\(\Rightarrow \lim _{ x\rightarrow 1 }{ f(x)-2=\pi } ({ 1 }^{ 2 }-1) \Rightarrow \lim _{ x\rightarrow 1 }{ f(x)-2=\pi \times 0 } \)
\(\Rightarrow \lim _{ x\rightarrow 1 }{ f(x) } -2=0\Rightarrow \lim _{ x\rightarrow 1 }{ f(x)-2=0 }\Rightarrow \lim _{ x\rightarrow 1 }{ f(x)=2 } \) -
\(\lim _{x \rightarrow \pi / 6} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1} \)
\(=\lim _{x \rightarrow \pi / 6} \frac{(2 \sin x-1)(\sin x+1)}{(2 \sin x-1)(\sin x-1)} \)
\(=\lim _{x \rightarrow \pi / 6} \frac{\sin x+1}{\sin x-1} \)
\(=\frac{1+\sin \frac{\pi}{6}}{\sin \frac{\pi}{6}-1}=\frac{1+\frac{1}{2}}{\frac{1}{2}-1}=-3\) -
\( \lim _{x \rightarrow \pi / 6} \frac{\cot ^{2} x-3}{\operatorname{cosec} x-2} \)
\(= \lim _{x \rightarrow \pi / 6} \frac{\operatorname{cosec}^{2} x-1-3}{\operatorname{cosec} x-2} \quad\left[\because \operatorname{cosec}^{2} x-\cot ^{2} x=1\right] \)
\(= \lim _{x \rightarrow \pi / 6} \frac{\operatorname{cosec}^{2} x-4}{\operatorname{cosec} x-2} \)
\(= \lim _{x \rightarrow \pi / 6} \frac{(\operatorname{cosec} x-2)(\operatorname{cosec} x+2)}{(\operatorname{cosec} x-2)} \quad[\text { by factorisation }] \)
\(=\lim _{x \rightarrow \pi / 6}(\operatorname{cosec} x+2)\)
\(= \operatorname{cosec} \frac{\pi}{6}+2=2+2=4\) -
\(\frac { dy }{ dx } =\frac { 1 }{ \sqrt [ 2 ]{ x } } -\frac { 1 }{ 2x^{ 3/2 } } \)
Ans: 0 -
\(put\quad y=\frac { \pi }{ 2 } -x,\quad as\quad x\rightarrow \frac { \pi }{ 2 } ,\quad then\quad y\rightarrow 0\)
\(\therefore \lim_ { x\rightarrow \pi /2 }{ lim } (secx-tanx)\)
\(=\lim_{ y\rightarrow 0 }{ lim } \left[ sec\left( \frac { \pi }{ 2 } -y \right) -tan\left( \frac { \pi }{ 2 } -y \right) \right] \)
\(=\lim_ { y\rightarrow 0 }{ lim } \left( cosec\quad y-cot\quad y \right) \)
\(\left[ \therefore s\left( sec\frac { \pi }{ 2 } -\theta \right) =cosec \ \theta \ and\quad tan\left( \frac { \pi }{ 2 } -\theta \right) =\ cot\quad \theta \right] \)
\(=\lim_ { y\rightarrow 0 }{ lim } \left( \frac { 1 }{ sin\quad y } -\frac { cos\quad y }{ sin\quad y } \right) =\lim_ { y\rightarrow 0 }{ lim } \left( \frac { 1-cos\quad y }{ sin\quad y } \right)\)
\( =\lim_ { y\rightarrow 0 }{ lim } =\frac { 2{ sin }^{ 2 }\frac { y }{ 2 } }{ 2sin\frac { y }{ 2 } cos\frac { y }{ 2 } } \quad \left[ \because { sin }^{ 2 }\frac { \theta }{ 2 } =\frac { 1-cos\quad \theta }{ 2 } \ and \ sin\ \theta =2sin\frac { \theta }{ 2 } cos\frac { \theta }{ 2 } \right] \)
\(=\lim_ { \frac { y }{ 2 } \rightarrow 0 }{ lim } tan\frac { y }{ 2 } =0 \quad [as\quad y\rightarrow 0,\quad then\quad \frac { y }{ 2 } \rightarrow 0]\) -
Let \(f(x)=sin\quad x\)
By using first principle of derivative, we have
\(f'(x)=\lim_ { h\rightarrow 0 }{ lim } \frac { f(x+h)-f(x) }{ h } =\lim_ { h\rightarrow 0 }{ lim } \frac { sin(x+h)-sinx }{ h } \)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { 2cos\left( \frac { x+h+x }{ 2 } \right) .sin\left( \frac { x+h-x }{ 2 } \right) }{ h }\)
\(\left[ \because sinC-sinD=2cos\left( \frac { C+D }{ 2 } \right) \times sin\left( \frac { C-D }{ 2 } \right) \right] \)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { 2cos\left( x+\frac { h }{ 2 } \right) .sin\frac { h }{ 2 } }{ h }\)
\(=\lim_ { h\rightarrow 0 }{ lim } \ cos\left( x+\frac { h }{ 2 } \right) .\lim_ { \frac { h }{ 2 } \rightarrow 0 }{ lim } \frac { sin\frac { h }{ 2 } }{ \frac { h }{ 2 } } \)
\([\therefore h\rightarrow 0\Rightarrow \frac { h }{ 2 } \rightarrow 0]\)
\(=\lim_ { h\rightarrow 0 }{ lim } cos\left( x+\frac { h }{ 2 } \right) \times 1\ \left[ \therefore \lim_ { h\rightarrow 0 }{ lim } \frac { sin\theta }{ \theta } =1 \right] \)
\(=cos(x+0)=cos\ x\)
\(\therefore \frac { d }{ dx } (sinx)=cosx\quad [putting\quad h=0]\)
-
Let f(x) = sec x
By using first principle of derivative, we have
\(f'(x)=\underset { h\rightarrow 0 }{ lim } \frac { f(x+h)-fx() }{ h } \)
\(\therefore f'(x)=\underset { h\rightarrow 0 }{ lim } \frac { sec(x+h)-sec\quad x }{ h }\)
\( =\underset { h\rightarrow 0 }{ lim } \frac { \frac { 1 }{ cos(x+h) } -\frac { 1 }{ cosx } }{ h } \)
\(=\underset { h\rightarrow 0 }{ lim } \frac { cos\quad x-cos(x+h) }{ h\times cos\quad x.cos(x+h) } \)
\(=\underset { h\rightarrow 0 }{ lim } \left[ \frac { -2sin\left( \frac { x+x+h }{ 2 } \right) .sin\frac { (x-x-h) }{ 2 } }{ h.cosx.cos(x+h) } \right] \)
\(\left[ \because cos\quad C-cos\quad D=-2sin\left( \frac { C+D }{ 2 } \right) sin\left( \frac { C-D }{ 2 } \right) \right] \)
\(=\underset { h\rightarrow 0 }{ lim } \left[ \frac { -2sin\left( x+\frac { h }{ 2 } \right) .\left( -sin\frac { h }{ 2 } \right) }{ h.cosx\quad cos(x+h) } \right] \)
\(=\underset { h\rightarrow 0 }{ lim } \frac { sin\left( x+\frac { h }{ 2 } \right) }{ cos(x+h).cos\quad x } .\underset { h\rightarrow 0 }{ lim } \frac { sin\frac { h }{ 2 } }{ \frac { h }{ 2 } } \)
\(=\frac { sin\quad x }{ cos^{ 2 }\quad x } \times 1\)
\(=\frac { sin\quad x }{ cos\quad x } .\frac { 1 }{ cos\quad x } =tanx.sec\quad x\) -
Let f(x) = tan x
Then, by first principle of derivative, we get
\(f'(x)=\lim_ { h\rightarrow 0 }{ lim } \frac { f(x+h)-f(x) }{ h } \)
\(=\lim_ { h\rightarrow 0 }{ lim } \quad \frac { tan(x+h)-tanx }{ h } \)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { 1 }{ h } \left[ \frac { sin(x+h) }{ cos(x+h) } -\frac { sin\quad x }{ cos\quad x } \right] \)
\(=\lim_{ h\rightarrow 0 }{ lim } \frac { 1 }{ h } \left[ \frac { sin(x+h-x) }{ cos(x+h)cos\quad x } \right] \)
\([\because sin\quad AcosB-cos\quad A\quad sin\quad B=sin(A-B)]\)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { sin\quad h }{ h } .\lim_ { h\rightarrow 0 }{ lim } \frac { 1 }{ cos(x+h)cos\quad x } \)
\(=1.\frac { 1 }{ cos(x+0)cos\quad x } \)
\(=\frac { 1 }{ cos^{ 2 }x } =sec^{ 2 }x\quad [\because \lim_{ h\rightarrow 0 }{ lim } \frac { sin\quad \theta }{ \theta } =1]\)
\(hence,\quad f'(x)or\quad \frac { d }{ dx } (tanx)=sec^{ 2 }x\) -
\(\frac{1}{2}cot x\sqrt{sinx}\)
2 Marks