CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions With Solution 2021
By QB365 on 27 May, 2021
QB365 Provides the NCERT Exemplar Question Papers for Class 11 Maths , and also provide the detail solution for each and every ncert exemplar papers. Ncert Exemplar papers will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
If \(f(x)=\left\{\begin{array}{l} x+2, x \leq-1 \\ c x^{2}, x>-1 \end{array}\right.\) then find c when \(\lim _{ x\rightarrow -1 }{ f(x) } \) exists.
(a) -
Show that \(\lim _{ x\rightarrow 4 }{ \frac { |x-4| }{ x-4 } } \)does not exist.
(a) -
Evaluate \(\lim _{x \rightarrow \pi / 6} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}\)
(a) -
Evaluate \(\lim _{x \rightarrow \pi / 6} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1}\) by using factorization method
(a) -
Find the derivative of the following functions,
\(\frac { sinx+cosx }{ sinx-cosx } \)
First, consider the given function as f(x). Then, use quotient rule to find the required derivative.(a) -
Evaluate \(\lim_ { x\rightarrow \pi /2 }{ lim } \left( sec \ x-tan \ x \right) .\)
(a) -
Differentiate the function \(\cos { \left( { x }^{ 2 }+1 \right) } \) by the first principle.
(a) -
Find the derivative of the following functions, \(\frac { secx+tanx }{ secx-tanx } \) First, consider the given function as f(x). Then, use quotient rule to find the required derivative.
(a) -
Find the derivates of the following function by using first principle.
sec x(a) -
Find the derivates of the following function by using first principle.
tan x(a)
2 Marks
*****************************************
CBSE 11th Standard Maths Subject Limits and Derivatives Ncert Exemplar 2 Marks Questions With Solution 2021 Answer Keys
-
\(LHL=\lim _{ X\rightarrow { -1 }^{ - } }{ (x+2)= } \lim _{ h\rightarrow 0 }{ (-1-h+2)=1 } \)
\(RHL=\lim _{ x\rightarrow { 1 }^{ + } }{ f(x) } =\lim _{ x\rightarrow { -1 }^{ + } }{ { cx }^{ 2 } } =\lim _{ h\rightarrow 0 }{ c{ (-1+h })^{ 2 } } \)
Ans. c = 1 -
Given \(\lim _{ x\rightarrow 4 }{ \frac { |x-4| }{ x-4 } } \)
\(LHL=\lim _{ { X\rightarrow 4 }^{ 1 } }{ \frac { -(x-4) }{ x-4 } } =1 \quad \left[ \because |x-4|=-(x-4),x<4 \right] \)
\(RHL=\lim _{ { X\rightarrow 4 }^{ + } }{ \frac { (x-4) }{ x-4 } } =1\quad \left[ \because |x-4|=(x-4),x<4 \right] \) -
\(\lim _{x \rightarrow \pi / 6} \frac{\sqrt{3} \sin x-\cos x}{x-\frac{\pi}{6}}\)
\(=\lim _{x \rightarrow \pi / 6} \frac{2\left(\sin x \cos \frac{\pi}{6}-\cos x \sin \frac{\pi}{6}\right)}{\left(x-\frac{\pi}{6}\right)}\)
\(=2 \lim _{x \rightarrow \pi / 6} \frac{\sin \left(x-\frac{\pi}{6}\right)}{\left(x-\frac{\pi}{6}\right)} \)
\([\because \sin A \cos B-\cos A \sin B=\sin (A-B)] \)
\(=2 \left[\because \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \text { and } x \rightarrow \frac{\pi}{6} \Rightarrow\left(x-\frac{\pi}{6}\right) \rightarrow 0\right]\) -
\(\lim _{x \rightarrow \pi / 6} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1} \)
\(=\lim _{x \rightarrow \pi / 6} \frac{(2 \sin x-1)(\sin x+1)}{(2 \sin x-1)(\sin x-1)} \)
\(=\lim _{x \rightarrow \pi / 6} \frac{\sin x+1}{\sin x-1} \)
\(=\frac{1+\sin \frac{\pi}{6}}{\sin \frac{\pi}{6}-1}=\frac{1+\frac{1}{2}}{\frac{1}{2}-1}=-3\) -
\(Let\quad f(x)=\frac { sinx+cosx }{ sinx-cosx } \)
On differentiating both sides w.r.t. x,we get
\({ f }^{ ' }(x)=\frac { \left[ (sinx-cosx)\frac { d }{ dx } (sinx+cosx)\\ -(sinx+cosx)\quad \frac { d }{ dx } (sinx-cosx) \right] }{ \left( sinx-cosx \right) ^{ 2 } } \)
\(\left[ \because \frac { d }{ dx } (\frac { f(x) }{ g(x) } )=\frac { g(x)\frac { d }{ dx } f(x)-f(x)\frac { d }{ dx } g(x) }{ \left[ g(x) \right] ^{ 2 } } \right]\)
\(=\frac { \left[ \left( sinx-cosx \right) \left[ \frac { d }{ dx } (sinx)+\frac { d }{ dx } (cosx) \right] \\ -(sinx+cosx)\left[ \frac { d }{ dx } (sinx)-\frac { d }{ dx } (cosx) \right] \right] }{ ({ sinx-cosx) }^{ 2 } } \)
\(=\frac { (sinx-cosx)(cosx-sinx)-(sinx+cosx)(cosx+sinx) }{ ({ sinx-cosx) }^{ 2 } } \)
\(\left[ \because \frac { d }{ dx } (sinx)=cosx\quad and\frac { d }{ dx } (cosx)=-sinx \right] \)
\(=\frac { -({ sinx-cosx) }^{ 2 }-({ sinx-cosx) }^{ 2 } }{ ({ sinx-cosx) }^{ 2 } } \)
\(=-\left[ \frac { ({ sinx }-cosx)^{ 2 }+({ sinx+cosx) }^{ 2 } }{ ({ sinx-cosx) }^{ 2 } } \right] \)
\( =\frac { \left[ -({ sin }^{ 2 }x+{ cos }^{ 2 }x-2sinxcosx+{ sin }^{ 2 }x\\ +{ cos }^{ 2 }x+2sinxcosx) \right] }{ ({ sinx-cosx })^{ 2 } } \)
\(=\frac { -2({ sin }^{ 2 }x+{ cos }^{ 2 }x) }{ (sinx-cosx)^{ 2 } } =\frac { -2 }{ ({ sinx-cosx) }^{ 2 } } \)
\(\left[ \because { sin }^{ 2 }\theta +{ cos }^{ 2 }\theta =1 \right] \) -
\(put\quad y=\frac { \pi }{ 2 } -x,\quad as\quad x\rightarrow \frac { \pi }{ 2 } ,\quad then\quad y\rightarrow 0\)
\(\therefore \lim_ { x\rightarrow \pi /2 }{ lim } (secx-tanx)\)
\(=\lim_{ y\rightarrow 0 }{ lim } \left[ sec\left( \frac { \pi }{ 2 } -y \right) -tan\left( \frac { \pi }{ 2 } -y \right) \right] \)
\(=\lim_ { y\rightarrow 0 }{ lim } \left( cosec\quad y-cot\quad y \right) \)
\(\left[ \therefore s\left( sec\frac { \pi }{ 2 } -\theta \right) =cosec \ \theta \ and\quad tan\left( \frac { \pi }{ 2 } -\theta \right) =\ cot\quad \theta \right] \)
\(=\lim_ { y\rightarrow 0 }{ lim } \left( \frac { 1 }{ sin\quad y } -\frac { cos\quad y }{ sin\quad y } \right) =\lim_ { y\rightarrow 0 }{ lim } \left( \frac { 1-cos\quad y }{ sin\quad y } \right)\)
\( =\lim_ { y\rightarrow 0 }{ lim } =\frac { 2{ sin }^{ 2 }\frac { y }{ 2 } }{ 2sin\frac { y }{ 2 } cos\frac { y }{ 2 } } \quad \left[ \because { sin }^{ 2 }\frac { \theta }{ 2 } =\frac { 1-cos\quad \theta }{ 2 } \ and \ sin\ \theta =2sin\frac { \theta }{ 2 } cos\frac { \theta }{ 2 } \right] \)
\(=\lim_ { \frac { y }{ 2 } \rightarrow 0 }{ lim } tan\frac { y }{ 2 } =0 \quad [as\quad y\rightarrow 0,\quad then\quad \frac { y }{ 2 } \rightarrow 0]\) -
Let \(f\left( x \right) =\cos { \left( { x }^{ 2 }+1 \right) } \)
We know by first principle,
\(f'\left( x \right) =\lim _{ h\rightarrow 0 }{ \frac { f\left( x+h \right) -f\left( x \right) }{ h } } \)
\(\therefore f'\left( x \right) =\lim _{ h\rightarrow 0 }{ \frac { \cos { \left[ \left( x+h \right) ^{ 2 }+1 \right] -\cos { \left( { x }^{ 2 }+1 \right) } } }{ h } }\)|
\(\left[ \therefore f\left( x \right) =\cos { \left( { x }^{ 2 }+1 \right) } \right] \)
\(=\lim _{ h\rightarrow 0 }{ \frac { -2\sin { \frac { \left( x+h \right) ^{ 2 }+1+{ x }^{ 2 }+1 }{ 2 } \sin { \frac { \left( x+h \right) ^{ 2 }+1-\left( { x }^{ 2 }+1 \right) }{ 2 } } } }{ h } } \)
\( \left[ \therefore \cos { C } -\cos { D=-2\sin { \left( \frac { C+D }{ 2 } \right) } \sin { \left( \frac { C-D }{ 2 } \right) } } \right] \)
\(=\lim _{ h\rightarrow 0 }{ \frac { -2\sin { \frac { \left( x+h \right) ^{ 2 }+{ x }^{ 2 }+2 }{ 2 } \sin { \frac { \left( x+h \right) ^{ 2 }-{ x }^{ 2 } }{ 2 } } } }{ h } } \)
\(=\lim _{ h\rightarrow 0 }{ \frac { \left\{ -2\sin { \frac { \left( x+h \right) ^{ 2 }+{ x }^{ 2 }+2 }{ 2 } \left[ \sin { \frac { \left( x+h \right) ^{ 2 }-{ x }^{ 2 } }{ 2 } } \right] } \left[ \frac { \left( x+h \right) ^{ 2 }-{ x }^{ 2 } }{ 2 } \right] \right\} }{ h\times \frac { \left( x+h \right) ^{ 2 }-{ x }^{ 2 } }{ 2 } } } \)
\(=\lim _{ h\rightarrow 0 }{ \frac { -2\sin { \frac { \left( x+h \right) ^{ 2 }+{ x }^{ 2 }+2 }{ 2 } \times \frac { { x }^{ 2 }+{ h }^{ 2 }+2xh-{ x }^{ 2 } }{ 2 } } }{ h } } \)
\(=\lim _{ h\rightarrow 0 }{ \frac { -2\sin { \left[ \frac { \left( x+h \right) ^{ 2 }+{ x }^{ 2 }+2 }{ 2 } \right] } \left( 2x+h \right) \frac { h }{ 2 } }{ h } } \)
\(=-2\sin { \left( \frac { 2{ x }^{ 2 }+2 }{ 2 } \right) } \times 2x\times \frac { 1 }{ 2 } =-2x\sin { \left( { x }^{ 2 }+1 \right) } \) -
Let \(y=\frac { secx+tanx }{ secx-tanx } =\frac { \frac { 1 }{ cosx } +\frac { sinx }{ cosx } }{ \frac { 1 }{ cosx } -\frac { sinx }{ cosx } } \Rightarrow y=\frac { 1+sinx }{ 1-sinx }\)
On differentiating both sides w.r.t. x,we get
\(\frac { dy }{ dx } =\frac { d }{ dx } \left( \frac { secx+tanx }{ secx-tanx } \right) =\frac { d }{ dx } \left( \frac { 1+sinx }{ 1-sinx } \right)\)
\(=\frac { \left( 1-sinx \right) \frac { d }{ dx } \left( 1+sinx \right) -\left( 1+sinx \right) \frac { d }{ dx } \left( 1-sinx \right) }{ ({ 1-sinx) }^{ 2 } } \)
\(=\frac { \left( 1-sinx \right) \left( 0+cosx \right) -\left( 1+sinx \right) \frac { d }{ dx } \left( 1-sinx \right) }{ (1-sinx)^{ 2 } } \) [using quotient rule of derivative]
\(=\frac { \left( 1-sinx \right) \left( 0+cosx \right) -\left( 1+sinx \right) \left( 0-cosx \right) }{ ({ 1-sinx })^{ 2 } } \)
\(=\frac { 2cosx }{ (1-sinx)^{ 2 } } \) -
Let f(x) = sec x
By using first principle of derivative, we have
\(f'(x)=\underset { h\rightarrow 0 }{ lim } \frac { f(x+h)-fx() }{ h } \)
\(\therefore f'(x)=\underset { h\rightarrow 0 }{ lim } \frac { sec(x+h)-sec\quad x }{ h }\)
\( =\underset { h\rightarrow 0 }{ lim } \frac { \frac { 1 }{ cos(x+h) } -\frac { 1 }{ cosx } }{ h } \)
\(=\underset { h\rightarrow 0 }{ lim } \frac { cos\quad x-cos(x+h) }{ h\times cos\quad x.cos(x+h) } \)
\(=\underset { h\rightarrow 0 }{ lim } \left[ \frac { -2sin\left( \frac { x+x+h }{ 2 } \right) .sin\frac { (x-x-h) }{ 2 } }{ h.cosx.cos(x+h) } \right] \)
\(\left[ \because cos\quad C-cos\quad D=-2sin\left( \frac { C+D }{ 2 } \right) sin\left( \frac { C-D }{ 2 } \right) \right] \)
\(=\underset { h\rightarrow 0 }{ lim } \left[ \frac { -2sin\left( x+\frac { h }{ 2 } \right) .\left( -sin\frac { h }{ 2 } \right) }{ h.cosx\quad cos(x+h) } \right] \)
\(=\underset { h\rightarrow 0 }{ lim } \frac { sin\left( x+\frac { h }{ 2 } \right) }{ cos(x+h).cos\quad x } .\underset { h\rightarrow 0 }{ lim } \frac { sin\frac { h }{ 2 } }{ \frac { h }{ 2 } } \)
\(=\frac { sin\quad x }{ cos^{ 2 }\quad x } \times 1\)
\(=\frac { sin\quad x }{ cos\quad x } .\frac { 1 }{ cos\quad x } =tanx.sec\quad x\) -
Let f(x) = tan x
Then, by first principle of derivative, we get
\(f'(x)=\lim_ { h\rightarrow 0 }{ lim } \frac { f(x+h)-f(x) }{ h } \)
\(=\lim_ { h\rightarrow 0 }{ lim } \quad \frac { tan(x+h)-tanx }{ h } \)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { 1 }{ h } \left[ \frac { sin(x+h) }{ cos(x+h) } -\frac { sin\quad x }{ cos\quad x } \right] \)
\(=\lim_{ h\rightarrow 0 }{ lim } \frac { 1 }{ h } \left[ \frac { sin(x+h-x) }{ cos(x+h)cos\quad x } \right] \)
\([\because sin\quad AcosB-cos\quad A\quad sin\quad B=sin(A-B)]\)
\(=\lim_ { h\rightarrow 0 }{ lim } \frac { sin\quad h }{ h } .\lim_ { h\rightarrow 0 }{ lim } \frac { 1 }{ cos(x+h)cos\quad x } \)
\(=1.\frac { 1 }{ cos(x+0)cos\quad x } \)
\(=\frac { 1 }{ cos^{ 2 }x } =sec^{ 2 }x\quad [\because \lim_{ h\rightarrow 0 }{ lim } \frac { sin\quad \theta }{ \theta } =1]\)
\(hence,\quad f'(x)or\quad \frac { d }{ dx } (tanx)=sec^{ 2 }x\)
2 Marks