CBSE 11th Standard Maths Subject Statistics HOT Questions 2 Mark Questions With Solution 2021
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Statistics HOT Questions 2 Mark Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
Find the standard deviation and the variance of first n natural numbers.
(a) -
If \(\bar { x } \) is mean and \(MD\left( \bar { x } \right) \) is the mean deviation from mean then find the number of observations lying between \(\bar { x } -MD\left( \bar { x } \right) \) and \(\bar { x } +MD\left( \bar { x } \right) \) . Use the data 22,24,30,27,29,31,25,28,41,42.
(a) -
Calculate the mean deviation about median for the age distribution of 100 persons given below.
Age 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 Number 5 6 12 14 26 12 16 9 First, make the class intervals are of uniform length and then use the following formula.
\(Median\left( M \right) =l+\frac { \frac { N }{ 2 } -cf }{ f } \times h\quad and\quad MD\left( M \right) =\frac { \Sigma fi|{ x }_{ i }-M| }{ \Sigma fi } \)(a)
*****************************************
CBSE 11th Standard Maths Subject Statistics HOT Questions 2 Mark Questions With Solution 2021 Answer Keys
-
The first n natural numbers are 1,2,3...,n.
\(\because\) Standard deviation,
\(SD=\sqrt { \frac { \sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } }{ n } -({ \frac { \sum _{ i=1 }^{ n }{ { x }_{ i } } }{ n } ) }^{ 2 } } \)
\(\therefore \ SD=\sqrt { \frac { (n(n+1)(2n+1) }{ 6n } -({ \frac { n(n+1) }{ 2n } ) }^{ 2 } } \)
\([\because \ \sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } =\frac { n(n+1)(2n+1) }{ 6 } and\ \sum _{ i=1 }^{ n }{ { x }_{ i } } =\frac { n(n+1) }{ 2 } ]\)
\(=\sqrt { (n+1)(\frac { 2n+1 }{ 6 } -\frac { n+1 }{ 4 } ) } \)
\(=\sqrt { (n+1)(\frac { 4n+2-3n-3 }{ 12 } ) } \)
\(=\sqrt { \frac { (n+1)(n-1) }{ 12 } } =\sqrt { \frac { { n }^{ 2 }-1 }{ 12 } } \)
\(\therefore \ Variance={ (SD) }^{ 2 }=\frac { { n }^{ 2 }-1 }{ 12 } \) -
On arranging the given data in ascending order, we have 22,24,25,27,28,29,30,31,41,42
Now, Mean
\(\bar { x } =\frac { 22+24+25+27+28+29+30+31+41+42 }{ 10 } =\frac { 299 }{ 10 } =29.9\)
and mean deviation from the mean, \(MD\left( \bar { x } \right) =\frac { \sum _{ i=1 }^{ n }{ \left| { { x }_{ i }-\bar { x } } \right| } }{ n } \)
\(=\frac { \left[ \left| 22-29.9 \right| +\left| 24-29.9 \right| +\left| 25-29.9 \right| +\left| 27-29.9 \right| +\left| 28-29.9 \right| +\left| 29-29.9 \right| +\left| 30-29.9 \right| +\left| 31-29.9 \right| +\left| 41-29.9 \right| +\left| 42-29.9 \right| \right] }{ 10 } \)
\(=\frac { 7.9+5.9+4.9+2.9+1.9+0.9+0.1+1.1+11.1+12.1 }{ 10 } \)
\(=\frac { 48.8 }{ 10 } =4.88=4.9\left( approx \right) .\)
\(\therefore \ \bar { x } -MD\left( \bar { x } \right) =29.9-4.9=25\)
\(\bar { x } +MD\left( \bar { x } \right) =29.9+4.9=34.8\)
On examining the arranged data, we find that observations between 25 and 34.8 are 27,28,29,30,31.
Hence, there are 5 observations lying between \(\bar { x } -MD\left( \bar { x } \right) \) and \(\bar { x } +MD\left( \bar { x } \right) \) -
Let us make the following table from the given data.
Class fi cf Mid value (xi) |xi - M| fi|xi - M| 15.5 - 20.5 5 5 18 |18 - 38| = 20 100 20.5 - 25.5 6 11 23 |23 - 38| = 15 90 25.5 - 30.5 12 23 28 |28 - 38| = 10 120 30.5 - 35.5 14 37 33 |33 - 38| = 5 70 35.5 - 40.5 26 63 38 |38 - 38| = 0 0 40.5 - 45.5 12 75 43 |43 - 38| = 5 60 45.5 - 50.5 16 91 48 |48 - 38| = 10 160 50.5 - 55.5 9 100 53 |53 - 38| = 15 135 Total N = 100 735 Here, \(\frac { N }{ 2 } =50\)
So, the median class is 35.5 - 40.5
\(\therefore \) l = 35.5, cf = 37, f = 26 and h = 5
Now,
\(Median\left( M \right) =l+\frac { \frac { N }{ 2 } -cf }{ f } \times h\)
\(=35.5+\frac { 50-37 }{ 26 } \times 5=35.5+\frac { 13 }{ 26 } \times 5=35.5+2.5=38\)
and Mean deviation about median
\(=\frac { \Sigma fi|{ x }_{ i }-M| }{ \Sigma fi } =\frac { 735 }{ 100 } =7.35\)
Hence, the mean deviation about median is 7.35.