CBSE 11th Standard Maths Subject Straight Lines Ncert Exemplar 2 Marks Questions 2021
By QB365 on 27 May, 2021
QB365 Provides the NCERT Exemplar Question Papers for Class 11 Maths , and also provide the detail solution for each and every ncert exemplar papers. Ncert Exemplar papers will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Straight Lines Ncert Exemplar 2 Marks Questions 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
Find the locus of a point which moves in such a way that the square of its distance from the point (3, -2) is numerically equal to its distance from the line 5x - 12y = 13.
(a) -
A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.
(a) -
If p is the length of perpendicular from the origin on the line \(\frac { x }{ a } +\frac { y }{ b } =1\) and a2 , p2 and b2 are in AP, then show that a4 + b4 = 0.
(a) -
Find the equation of line passing through the point \((a\ { cos }^{ 3 }\theta ,\ a \ sin^{ 3 } \ \theta )\) and perpendicular to the line \(x \sec \theta+y \operatorname{cosec} \theta=a\) .
(a) -
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
(a)
2 Marks
*****************************************
CBSE 11th Standard Maths Subject Straight Lines Ncert Exemplar 2 Marks Questions 2021 Answer Keys
-
Ler P(h, k) be a variable point moving in such a way that the square of its distance from A(3, -2) is numerically equal to its distance from the line 5x - 12y = 13.
\(\therefore \) (h-3)2 + (k+2)2 = \(\frac { \left| 5h-12k-13 \right| }{ \sqrt { { 5 }^{ 2 }+{ \left( -12 \right) }^{ 2 } } } \)
\(\Rightarrow \) 13{(h - 3)2 + (k + 2)2} = \(\pm \) (5h - 2k - 13)
\(\Rightarrow \) 13(h2 + k2) - 83h + 64k + 182 = 0
or 13(h2 + k2) - 73h + 40k + 156 = 0
Hence, the locus of (h, k) is
13 (x2 +y2) - 83x + 64 y +182 =0
or 13 (x2 + y2) - 73 + 40y + 156 =0 -
Let slope of the line be m and the coordinates of fixed point P be (x1, y1).
Then, equation of line is y - y1 = m (x - x1) ....(i)
Let the given points be A(2, 0), B(0, 2) and C(1,1).
Now, perpendicular distance from A
\(=\frac { 0-{ y }_{ 1 }-m\left( 2-{ x }_{ 1 } \right) }{ \sqrt { 1+{ m }^{ 2 } } } \)
Perpendicular distance from B \(=\frac { 2-{ y }_{ 1 }-m\left( 0-{ x }_{ 1 } \right) }{ \sqrt { 1+{ m }^{ 2 } } } \)
and perpendicular distance from C \(=\frac { 1-{ y }_{ 1 }-m\left( 1-{ x }_{ 1 } \right) }{ \sqrt { 1+{ m }^{ 2 } } } \)
Now,\(\frac { \left[ -{ y }_{ 1 }-2m+{ mx }_{ 1 }+2-{ y }_{ 1 }+{ mx }_{ 1 }+1-{ y }_{ 1 }-m+{ mx }_{ 1 } \right] }{ \sqrt { 1+{ m }^{ 2 } } } =0\)
\(\Rightarrow \) -3y1 - 3m +3mx1 + 3 = 0
\(\Rightarrow \) -y1 - m + mx1 + 1 = 0
\(\Rightarrow \) y1 = -m + mx1 + 1
On substituting this value in Eq. (i), we gwt
y + m - mx1 - 1 = mx - mx1 \(\Rightarrow \) y - 1 = m(x - 1)
Thus,(x1, y1) = (1, 1) -
Given equation of line is
\(\frac { x }{ a } +\frac { y }{ b } =1\) ....(i)
Perpendicular length from the origin to the line (i) is
\(p=\frac { 1 }{ \sqrt { \frac { 1 }{ { a }^{ 2 } } +\frac { 1 }{ { b }^{ 2 } } } } =\frac { ab }{ \sqrt { { a }^{ 2 }+{ b }^{ 2 } } } \Rightarrow { p }^{ 2 }=\frac { { a }^{ 2 }{ b }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 } } \)
Since, a2 , p2 and b2 are in AP.
\(\therefore { 2p }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }\Rightarrow \frac { 2{ a }^{ 2 }{ b }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 } } ={ a }^{ 2 }{ +b }^{ 2 }\)
\(\Rightarrow \) 2a2b2 = (a2 + b2)2 \(\Rightarrow \)2a2b2 = a4+b4+2a2b2
\(\Rightarrow \) a4 + b4 = 0 -
Given point is \((a \ { cos }^{ 3 }\theta ,a sin^{ 3 }\ \theta )\) and the line is \(x \sec \theta+y \operatorname{cosec} \theta=a\)
\(\because\) Slope of given line \(=-\frac { sec\theta }{ cosec\theta } =-tan\theta \)
\(\therefore\) Slope of required line = \(\frac { 1 }{ tan\theta } =cot\theta \)
Now, equation of the required line having slope cot \(\theta\) and passing through \((a \ { cos }^{ 3 }\theta ,a sin^{ 3 }\ \theta )\), is
\(y-a \sin ^{3} \theta=\cot \theta\left(x-a \cos ^{3} \theta\right) \)
\(\Rightarrow y-a \sin ^{3} \theta=\frac{\cos \theta}{\sin \theta}\left(x-a \cos ^{3} \theta\right) \)
\(\Rightarrow y \sin \theta-a \sin ^{4} \theta=x \cos \theta-a \cos ^{4} \theta \)
\(\Rightarrow x \cos \theta-y \sin \theta=a \cos ^{4} \theta-a \sin ^{4} \theta \)
\(\Rightarrow x \cos \theta-y \sin \theta \)
\(=a\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right] \)
\(\Rightarrow x \cos \theta-y \sin \theta=a \cos 2 \theta\) -
Let the coordinates of the point A be ( x, 0 ) .From the figure, the slope of the reflected ray is given by
tan \(\theta \) = \(\frac{3}{5 - x} \) .... ( i )
Again , the slope of the incident ray is given by
tan ( \(\pi\) - \(\theta\) ) = \(\frac{-2}{ x-1 }\) [ \(\because\) m = \(\frac{y_2-y_1}{x_2-x_1}\) ]
\(\Rightarrow\) - tan \(\theta\) = \( \frac{-2}{ x-1 }\) [ \(\because\) tan ( \(\pi\) - \(\theta\) = - tan \(\theta\) ) ]
\(\Rightarrow\) tan \(\theta\) = \( \frac{2}{ x - 1}\)
From Eqs.(i) and (ii), we get
\(\frac{3}{ 5 - x }\) = \(\frac{2}{ x - 1}\)
\(\Rightarrow\) 3x - 3 = 10 -2x
\(\Rightarrow\) x = \( \frac{13}{5}\)
Therefore , the required coordinates of the point A are ( \(\frac{13}{5}\),0 ).
2 Marks