CBSE 11th Standard Maths Subject Trigonometric Functions HOT Questions 2 Mark Questions With Solution 2021
By QB365 on 29 May, 2021
QB365 Provides the HOT Question Papers for Class 11 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Trigonometric Functions HOT Questions 2 Mark Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
If m sin\(\theta \) = n sin (\(\theta \) + 2\(\alpha \)), then prove that tan (\(\theta \) + \(\alpha \)) cot \(\alpha \) = \(\frac { m+n }{ m-n } \)
(a) -
In \(\triangle \)ABC, if a cos A=b cos B, show that the triangle is either isosceles or right angled.
(a) -
In a ΔABC, \(\frac { { a }^{ 2 }-{ b }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 } } =\frac { \sin { \left( A-B \right) } }{ \sin { A+B } } \) , prove that it is either a right angled or an isosceles triangle.
(a) -
Prove that
\(tan\quad \theta \quad tan\quad ({ 60 }^{ o }-\theta )tan\quad ({ 60 }^{ o }+\theta )\quad =\quad tan\quad 3\theta .\)(a) -
If cos \(\alpha \) +cos \(\beta\) = 0 = sin \(\alpha \) +sin\(\beta\), then find the value of cos2\(\alpha \)+cos 2\(\beta\)
(a)
*****************************************
CBSE 11th Standard Maths Subject Trigonometric Functions HOT Questions 2 Mark Questions With Solution 2021 Answer Keys
-
Given, m sin\(\theta \) = nsin (\(\theta \) + 2\(\alpha \))
\(\Rightarrow \) \(\frac { m }{ n } = \frac { sin\left( \theta +2\alpha \right) }{ sin\theta } \)
Applying componedo and dividendo rule, we get
\(\frac { m+n }{ m-n } =\quad \frac { sin\left( \theta +2\alpha \right) +sin\theta }{ sin\left( \theta +2\alpha \right) -sin\theta } \)
\(=\frac { 2sin\left( \frac { \theta +2\alpha +\theta }{ 2 } \right) cos\left( \frac { \theta +2\alpha +\theta }{ 2 } \right) }{ 2cos\left( \frac { \theta +2\alpha +\theta }{ 2 } \right) sin\left( \frac { \theta +2\alpha +\theta }{ 2 } \right) } \)
\(\left[ sinA+sinB=2sin\left( \frac { A+B }{ 2 } \right) cos\left( \frac { A-B }{ 2 } \right) and\quad sinA-sinB=2cos\left( \frac { A+B }{ 2 } \right) sin\left( \frac { A-B }{ 2 } \right) \right]\)
\(=\frac { 2sin(\theta +\alpha )\quad cos\alpha }{ 2cos(\theta +\alpha )\quad cos\alpha } =\quad tan(\theta +\alpha )cot\alpha\)
Hence proved. -
Given, a cos A=b cos B
\(\Rightarrow \) k sin A cos A=k sin B cos B
\(\Rightarrow \) sin 2A=sin 2B
\(\Rightarrow \) sin 2A - sin 2B=0
\(\Rightarrow \) 2cos(A+B)sin(A-B)=0
\(\Rightarrow \) cos(A+B)=0 or sin(A-B)=0
\(\Rightarrow \) A+B=\(\frac { \pi }{ 2 } \) or A-B=0
Ans. \(\angle \)C=\(\frac { \pi }{ 2 } \) or A=B -
\(Let\frac { a }{ \sin { A } } =\frac { b }{ \sin { B } } =\frac { c }{ \sin { C } } =K\)
\(\Rightarrow a=K\sin { A,b=K\sin { B\quad and } } c=K\sin { C } \)
\(Now,\frac { \sin { \left( A-B \right) } }{ \sin { \left( A+B \right) } } =\frac { { a }^{ 2 }-{ b }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 } } =\frac { { K }^{ 2 }\sin { ^{ 2 }A-{ K }^{ 2 }\sin { ^{ 2 }B } } }{ { K }^{ 2 }\sin { ^{ 2 }A+{ K }^{ 2 }\sin { ^{ 2 }B } } } \)
\( \Rightarrow \quad \quad \frac { \sin { \left( A-B \right) } }{ \sin { \left( A+B \right) } } =\frac { \sin { ^{ 2 }A-\sin { ^{ 2 }B } } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } \)
\(\Rightarrow \frac { \sin { \left( A-B \right) } }{ \sin { \left( \pi -C \right) } } =\frac { \sin { \left( A+B \right) } \sin { \left( A-B \right) } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } \quad \left[ \therefore A+B=\pi -C \right] \)
\(\Rightarrow \frac { \sin { \left( A-B \right) } }{ \sin { C } } =\frac { \sin { C\sin { \left( A-B \right) } } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } \)
\(\Rightarrow \frac { \sin { \left( A-B \right) } }{ \sin { C } } =\frac { \sin { C\sin { \left( A-B \right) } } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } =0\)
\(\Rightarrow \sin { A-B\left[ \frac { 1 }{ \sin { C } } -\frac { \sin { C } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } \right] } =0\)
\(\Rightarrow \sin { \left( A-B \right) =0 } \quad or\quad \frac { 1 }{ \sin { C } } -\frac { \sin { C } }{ \sin { ^{ 2 }A+\sin { ^{ 2 }B } } } =0\)
\(\Rightarrow A=B\quad or\quad \sin { ^{ 2 }A+\sin { ^{ 2 }B } -\sin { ^{ 2 }C } } =0\)
\( \Rightarrow A=B\quad or\quad \frac { { a }^{ 2 } }{ { k }^{ 2 } } +\frac { { b }^{ 2 } }{ { k }^{ 2 } } -\frac { { c }^{ 2 } }{ { k }^{ 2 } } =0\)
\(\Rightarrow A=B\quad or\quad { a }^{ 2 }+{ b }^{ 2 }={ c }^{ 2 }\)
\(\therefore \) Either the triangle is isosceles or right angled.
Hence proved. -
LHS = \(tan\quad \theta \quad tan\quad ({ 60 }^{ o }-\theta )tan\quad ({ 60 }^{ o }+\theta )\)
\(=\frac { sin\quad \theta }{ cos\quad \theta } .\frac { sin\quad \left( { 60 }^{ o }-\theta \right) }{ cos\quad \left( { 60 }^{ o }-\theta \right) } .\frac { sin\quad \left( { 60 }^{ o }+\theta \right) }{ cos\quad \left( { 60 }^{ o }+\theta \right) } \)
\(=\frac { sin\quad \theta [2sin\quad \left( { 60 }^{ o }-\theta \right) sin\quad \left( { 60 }^{ o }+\theta \right) ] }{ cos\quad \theta [2cos\quad \left( { 60 }^{ o }-\theta \right) cos\quad \left( { 60 }^{ o }+\theta \right) ] } \)
\(=\frac { sin\quad \theta (cos\quad 2\theta \quad -\quad cos\quad { 120 }^{ o }) }{ cos\quad \theta (cos\quad { 120 }^{ o }+cos\quad 2\theta ) } \)
\(\because\) 2 sinA sinB = cos(A−B)−cos(A+B) and 2 cosA cosB = cos(A+B)+cos(A−B)]
\(=\frac { sin\quad \theta \left( cos\quad 2\theta +\frac { 1 }{ 2 } \right) }{ cos\quad \theta \quad \left( cos\quad 2\theta -\frac { 1 }{ 2 } \right) } \left[ \because cos { 120 }^{ o }= cos \left( { 180 }^{ o }- { 60 }^{ o } \right) = -cos\quad { 60 }^{ o }=-\frac { 1 }{ 2 } \right] \)
\(=\frac { sin\quad \theta cos\quad 2\theta +\frac { 1 }{ 2 } sin\theta }{ cos\quad \theta \quad cos\quad 2\theta -\frac { 1 }{ 2 } cos\theta } =\frac { 2sin\quad \theta cos\quad 2\theta +sin\theta }{ 2cos\quad \theta \quad cos\quad 2\theta -cos\quad \theta }\)
\(=\frac { sin\quad \left( \theta +2\theta \right) +sin\quad (-\theta )+sin\theta }{ cos\quad (\theta +2\theta )+cos\quad (-\theta )-cos\quad \theta } \)
\(\left[ \therefore \quad 2sin\quad A\quad cos\quad B\quad =\quad sin\quad (A+B)+sin\quad (A-B)\quad and\quad 2cos\quad A\quad cos\quad B\quad =\quad cos\quad (A+B)+cos\quad (A-B) \right] \)
\(=\frac { sin\quad 3\theta -sin\quad \theta +sin\quad \theta }{ cos\quad 3\theta +cos\quad \theta -cos\quad \theta } \quad \quad \left[ \because sin\quad (-\theta )=-sin\theta \quad and\quad cos\quad (-\theta )=cos\quad \theta \right] \)
\(=\frac { sin\quad 3\theta }{ cos\quad 3\theta } =tan\quad 3\theta =RHS\)
Hence proved. -
Given, co s\(\alpha \)+cos\(\beta\) = 0 and sin \(\alpha \)+sin\(\beta\) = 0
on squaring both equations, we get
(cos\(\alpha \)+cos\(\beta\) )2 =0 ...(i)
and ( sin \(\alpha \)+sin\(\beta\))2 = 0 ....(ii)
On subtracting Eq.(ii) from Eq.(i), we get
(cos\(\alpha \)+cos\(\beta\) )2 +( sin \(\alpha \)+sin\(\beta\))2 =0
\(\Rightarrow \)(cos2 \(\alpha \)+cos2 \(\beta\)+2cos\(\alpha \) cos \(\beta\) - (sin2\(\alpha \)+ sin2 \(\beta\)+2sin\(\alpha \) sin\(\beta\))=0 [(a+b)2= a2+b2+2ab]
\(\Rightarrow \)cos2 \(\alpha \)+cos2 \(\beta\)+2cos\(\alpha \) cos \(\beta\)-sin2\(\alpha \) - sin2\(\beta\)-2sin \(\alpha \)+sin\(\beta\)= 0
\(\Rightarrow \)(cos2 \(\alpha \) - sin2 \(\alpha \)) + (cos2 \(\beta\) - sin2 \(\beta\)) + 2[cos2 \(\alpha \)+cos2 \(\beta\) - 2sin \(\alpha \) sin\(\beta\)]= 0
\(\left[\begin{array}{l} \because \cos 2 x=\cos ^{2} x-\sin ^{2} x \text { and } \\ \cos A \cos B-\sin A \sin B=\cos (A+B) \end{array}\right]\)
\(\therefore \quad \cos 2 \alpha+\cos 2 \beta=-2 \cos (\alpha+\beta)\)