CBSE 11th Standard Physics Subject Motion in a Straight Line Ncert Exemplar 5 Mark Questions 2021
By QB365 on 26 May, 2021
QB365 Provides the updated NCERT Exemplar Questions for Class
11, and also provide the detail solution for each and every NCERT Exemplar questions. NCERT Exemplar questions are latest updated question pattern from NCERT, QB365 will helps to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Physics Subject Motion in a Straight Line Ncert Exemplar 5 Mark Questions 2021
11th Standard CBSE
-
Reg.No. :
Physics
-
It is a common observation that rain clouds can be at about a kilometre altitude above the ground.
(a) If a rain drop falls from such a height freely under gravity, what will be its speed?Also, calculate in km/h (g = 10 m/s2).
(b) A typical rain drop is about 4 mm diameter.Momentum is mass x speed in magnitude.Estimate its momentum when it hits ground.
(c) Estimate time required to flatten the drop.
(d) Rate of change of momentum is force.Estimate how much force such a drop would exert on you?
(e) Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5cm.(a)
*****************************************
CBSE 11th Standard Physics Subject Motion in a Straight Line Ncert Exemplar 5 Mark Questions 2021 Answer Keys
-
(a) Here, height(h)=1 km = 1000m, g = 10m/s2
Velocity attained by the rain drop in freely falling through a height h.
\(v=\sqrt { 2gh } =\sqrt { 2\times 10\times 1000 }\)
\( \\ =100\sqrt { 2 } m/s\)
\(\\ =100\sqrt { 2 } \times \frac { 60\times 60 }{ 1000 } Km/h\)
\(\\ =360\sqrt { 2 } km/h\approx 510km/h\)
(b) Diameter of the drop(d) = 2r = 4mm
Radius of the drop(r) = 2mm = 2 x 10-3m
Mass of a rain drop(m)=Vx\(\rho \)
\(=\frac { 4 }{ 3 } \pi { r }^{ 3 }\rho =\frac { 4 }{ 3 } \times \frac { 22 }{ 7 } \times (2\times { 10 }^{ -3 })^{ 3 }\times { 10 }^{ 3 }\)
\( \approx 3.4\times { 10 }^{ -5 }kg\)
\(\\ Momentum \ of \ the \ rain \ drop(\rho )=mv \)
\(\\ =3.4\times { 10 }^{ -5 }\times 100\sqrt { 2 }\)
\(\\ \approx 4.7\times { 10 }^{ -3 }{ kg }^{ -m/s }\)
(c) Time required to flatten the drop
= time taken by the drop to travel the distance equal to the diameter of the drop near the ground
\(t=\frac { d }{ v } =\frac { 4\times { 10 }^{ -3 } }{ 100\sqrt { 2 } } =0.028\times { 10 }^{ -3 }s\)
\(\\ =2.8\times { 10 }^{ -5 }s\)
(d) Force exerted by a rain drop
\(F=\frac { Change \ in \ momentum }{ Time } \)
\(=\frac { \rho -0 }{ t } =\frac { 4.7\times { 10 }^{ -3 } }{ 2.8\times { 10 }^{ -5 } } \approx 168N\)
(e) Radius of the umbrella(R) = \(\frac { 1 }{ 2 } m\)
\(\therefore \ Area \ of \ the \ umbrella(A)=\pi { R }^{ 2 }\)
\(\\ =\frac { 22 }{ 7 } \times { (\frac { 1 }{ 2 } ) }^{ 2 }=\frac { 22 }{ 28 } =\frac { 11 }{ 14 } \approx 0.8{ m }^{ 2 }\)
Number of drops striking the umbrella simultaneously with average of 5cm or 5 x 10-2m
\(=\frac { 0.8 }{ { (5\times { 10 }^{ -2 }) }^{ 2 } } =320\)
Net force exerted on umbrella
= 320 x 168 = 53760 N