CBSE 11th Standard Physics Subject Waves Ncert Exemplar 5 Mark Questions 2021
By QB365 on 26 May, 2021
QB365 Provides the updated NCERT Exemplar Questions for Class
11, and also provide the detail solution for each and every NCERT Exemplar questions. NCERT Exemplar questions are latest updated question pattern from NCERT, QB365 will helps to get more marks in Exams
QB365 - Question Bank Software
CBSE 11th Standard Physics Subject Waves Ncert Exemplar 5 Mark Questions 2021
11th Standard CBSE
-
Reg.No. :
Physics
-
For the harmonic travelling wave \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \) , where, x and y are in cm and t is in second. What is the phase difference between the oscillatory motion at two points separated by a distance of 0.5 m.
(a) -
For the harmonic travelling wave \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \) , where, x and y are in cm and t is in second. What is the phase difference between the oscillatory motion at two points separated by a distance of \(\frac { \lambda }{2 } \).
(a) -
For the harmonic travelling wave \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \) , where, x and y are in cm and t is in second. What is the phase difference between the oscillatory motion at two points separated by a distance of \(\frac { 3\lambda }{ 4 } \)(at a given instant in time)?
(a) -
For the harmonic travelling wave \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \), where, x and y are in cm and t is in second. What is the phase difference between the oscillatory motion at two points separated by a distance of What is the phase difference between the oscillation of a particle located at x=100 cm, at t=Ts and t = 5s?
(a) -
In the given progressive wave, \(y=5sin(100\pi t-0.4\pi x)\)
Where, y and x are in m,t is in seconds. What is the
(i) amplitude
(ii) wavelength
(iii) frequency
(iv) wave velocity
(v) particle velocity amplitude?(a)
*****************************************
CBSE 11th Standard Physics Subject Waves Ncert Exemplar 5 Mark Questions 2021 Answer Keys
-
Given equation is \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
Comparing with standard equation,
\(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
\( y=a\cos { \left( \omega t-kx+\phi \right) } \)
\(a=2cm,\omega =\frac { 2\pi }{ T } =20\pi ,\ T=0.1s\)
\( k=\frac { 2\pi }{ \lambda } =0.008\times 2\pi \Rightarrow \lambda =\frac { 2\pi }{ 2\pi \times 0.008 } =1.25m\)
\(\phi =2\pi \times 3.5=7\pi rad\)
\({ \phi }_{ 2 }=\frac { 2\pi }{ \lambda } \times x=\frac { 2\pi }{ 1.25 } \times 0.5=0.8\pi rad\). -
Given equation is \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
Comparing with standard equation,
\(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
\(\\ y=a\cos { \left( \omega t-kx+\phi \right) } \)
\(a=2cm,\omega =\frac { 2\pi }{ T } =20\pi ,\ T=0.1s\)
\(k=\frac { 2\pi }{ \lambda } =0.008\times 2\pi \Rightarrow \lambda =\frac { 2\pi }{ 2\pi \times 0.008 } =1.25m\)
\(\\ \phi =2\pi \times 3.5=7\pi rad\)
When x = \(\frac { \lambda }{2 } \)
\({ \phi }_{ 3 }=\frac { 2\pi }{ \lambda } \times \lambda /2=\pi rad\). -
Given equation is \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
Comparing with standard equation,
\(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right)\)
\( y=a\cos { \left( \omega t-kx+\phi \right) } \)
\(a=2cm,\omega =\frac { 2\pi }{ T } =20\pi ,\quad T=0.1s\)
\(\\ k=\frac { 2\pi }{ \lambda } =0.008\times 2\pi \Rightarrow \lambda =\frac { 2\pi }{ 2\pi \times 0.008 } =1.25m\)
\(\\ \phi =2\pi \times 3.5=7\pi rad\)
When x = \(\frac { 3\lambda }{ 4 } \); \({ \phi }_{ 4 }=\frac { 2\pi }{ \lambda } \times \frac { 3\lambda }{ 4 } =\frac { 3\pi }{ 2 } rad\). -
Given equation is \(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
Comparing with standard equation,
\(y=2\cos { 2\pi } \left( 10t-0.0080x+3.5 \right) \)
\(y=a\cos { \left( \omega t-kx+\phi \right) } \)
\( a=2cm,\omega =\frac { 2\pi }{ T } =20\pi ,\ T=0.1s\)
\( k=\frac { 2\pi }{ \lambda } =0.008\times 2\pi \Rightarrow \lambda =\frac { 2\pi }{ 2\pi \times 0.008 } =1.25m\)
\(\\ \phi =2\pi \times 3.5=7\pi rad\)
\(At\ t=T;\phi =\frac { 2\pi }{ T } =\frac { 2\pi }{ 0.1 } =20\pi rad\)
\(\\ and\ at\ t=5s;{ \phi }^{ ' }=\frac { 2\pi }{ 0.1 } \times 5.100\pi rad\)
\(\therefore phase\ difference\ { \phi }^{ ' }-\ \phi =100\pi rad-20\pi rad=8020\pi rad\). -
Comparing with the standard from the equation
Y = asin\(\left[ \omega t-kx \right] \)
(i) Amplitude, a = 5m
(ii) \(\omega =\frac { 2\pi }{ T } =100\pi \)
\(\\ K=\frac { 2\pi }{ \lambda } =0.4\pi \Rightarrow \lambda =\frac { 2 }{ 0.4 } =\frac { 20 }{ 4 } =5m\)
(iii) \(\omega =2\pi v=100\pi v=50Hz\)
(iv) Wave velocity, v = \(v\lambda \) = 50 x 5 = 250m/s
(v) Particle velocity = \(\frac { dy }{ dx } =a\omega cos(\omega t-kx\)
\(\left( \frac { dy }{ dx } \right) _{ max }=a\omega =5\times 100\pi m/s\)