CBSE 12th Standard Maths Subject Continuity and Differentiability HOT Questions 4 Mark Questions 2021
By QB365 on 28 May, 2021
QB365 Provides the HOT Question Papers for Class 12 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Continuity and Differentiability HOT Questions 4 Mark Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
If x sin (a+y) + sin a cos (a+y)=0, prove that \(\frac { dy }{ dx } =\frac { { sin }^{ 2 }(a+y) }{ sin\quad a } \)
(a) -
If \(y={ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n }\)prove that \(\frac { dy }{ dx } =\frac { ny }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \)
(a) -
If \(y={ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n }\)prove that \(\frac { dy }{ dx } =\frac { ny }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \)
(a) -
If \({ x }^{ 2 }+{ y }^{ 2 }=t-\frac { 1 }{ t } \)and \({ x }^{ 4 }+{ y }^{ 4 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } \) show that \(\frac { dy }{ dx } =\frac { 1 }{ { x }^{ 3 }y } \)
(a) -
If \({ x }^{ 2 }+{ y }^{ 2 }=t-\frac { 1 }{ t } \)and \({ x }^{ 4 }+{ y }^{ 4 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } \)show that \(\frac { dy }{ dx } =\frac { 1 }{ { x }^{ 3 }y } \)
(a)
*****************************************
CBSE 12th Standard Maths Subject Continuity and Differentiability HOT Questions 4 Mark Questions 2021 Answer Keys
-
\(\frac { dy }{ dx } =\frac { { sin }^{ 2 }(a+y) }{ sin\quad a } \)
-
We have \(y={ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n }\) ....(1)
\(\frac { dy }{ dx } =n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 }\frac { d }{ dx } \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\}\)
\( =n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 }\)
\(\left[ 1+\frac { 1 }{ 2\sqrt { { x }^{ 2 }+{ a }^{ 2 } } } (2x+0) \right] \)
\(=n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 }\left\{ \frac { \sqrt { { x }^{ 2 }+{ a }^{ 2 } } +x }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \right\} \)
\(=\frac { n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n } }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } =\frac { ny }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \)
which is true. -
We have \(y={ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n }\) ....(1)
\(\frac { dy }{ dx } =n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 }\frac { d }{ dx } \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} \)
\(=n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 } \)
\(\left[ 1+\frac { 1 }{ 2\sqrt { { x }^{ 2 }+{ a }^{ 2 } } } (2x+0) \right] \)
\(=n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n-1 }\left\{ \frac { \sqrt { { x }^{ 2 }+{ a }^{ 2 } } +x }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \right\} \)
\(=\frac { n{ \left\{ x+\sqrt { { x }^{ 2 }+{ a }^{ 2 } } \right\} }^{ n } }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } =\frac { ny }{ \sqrt { { x }^{ 2 }+{ a }^{ 2 } } } \)
which is true. -
We have \({ x }^{ 2 }+{ y }^{ 2 }=t-\frac { 1 }{ t } \)...(1)
\({ x }^{ 4 }+{ y }^{ 4 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } \).....(2)
squaring (1) \({ \left( { x }^{ 2 }+{ y }^{ 2 } \right) }^{ 2 }={ \left( t-\frac { 1 }{ t } \right) }^{ 2 }\)
\({ x }^{ 4 }+{ y }^{ 4 }+2{ x }^{ 2 }{ y }^{ 2 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } -2\)
\(=2{ x }^{ 2 }{ y }^{ 2 }=-2\)
\( { y }^{ 2 }=-\frac { 1 }{ { x }^{ 2 } } \)
Differentiating w.r.t.x, \(2y\frac { dy }{ dx } =\frac { -2 }{ { x }^{ 3 } } \)
\(\frac { dy }{ dx } =\frac { 1 }{ { x }^{ 3 }y } \)
which is true. -
We have \({ x }^{ 2 }+{ y }^{ 2 }=t-\frac { 1 }{ t } \)...(1)
\({ x }^{ 4 }+{ y }^{ 4 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } \).....(2)
squaring (1) \({ \left( { x }^{ 2 }+{ y }^{ 2 } \right) }^{ 2 }={ \left( t-\frac { 1 }{ t } \right) }^{ 2 }\)
\({ x }^{ 4 }+{ y }^{ 4 }+2{ x }^{ 2 }{ y }^{ 2 }={ t }^{ 2 }+\frac { 1 }{ { t }^{ 2 } } -2\)
\(=2{ x }^{ 2 }{ y }^{ 2 }=-2\)
\({ y }^{ 2 }=-\frac { 1 }{ { x }^{ 2 } } \)
Differentiating w.r.t.x, \(2y\frac { dy }{ dx } =\frac { -2 }{ { x }^{ 3 } } \)
\(\frac { dy }{ dx } =\frac { 1 }{ { x }^{ 3 }y } \)
which is true.