CBSE 12th Standard Maths Subject Determinants HOT Questions 4 Mark Questions 2021
By QB365 on 28 May, 2021
QB365 Provides the HOT Question Papers for Class 12 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Determinants HOT Questions 4 Mark Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Without expanding the determinant at any stage, prove that \(\left| \begin{matrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{matrix} \right| =0\), where a, b, c are in A.P.
(a) -
If a, b, c are all positive and are pth, qth, rth terms respectively of a G > P, then prove that : \(\left| \begin{matrix} loga & p & 1 \\ logb & q & 1 \\ logc & r & 1 \end{matrix} \right| =0\)
(a) -
Prove that : \(\left| \begin{matrix} { a }^{ 2 } & { a }^{ 2 }-{ (b-c) }^{ 2 } & bc \\ { b }^{ 2 } & { b }^{ 2 }-{ (c-a) }^{ 2 } & ca \\ { c }^{ 2 } & { c }^{ 2 }-{ (a-b) }^{ 2 } & ab \end{matrix} \right| =(b-c)(c-a)(a+b+c)({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 })\)
(a) -
\(\left| \begin{matrix} { yz }-x^{ 2 } & { zx }-y^{ 2 } & { xy-z }^{ 2 } \\ { zx-y }^{ 2 } & { xy }-z^{ 2 } & { yz-x }^{ 2 } \\ { xy-z }^{ 2 } & { yz }-x^{ 2 } & { zx-x }^{ 2 } \end{matrix} \right| \)is divisible by (x+y+z) and here, find the quotient.
(a) -
An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1,y1), (x2,y2) and (x3, y3), show that \(\left| \begin{matrix} x_1 &y_1 &1 \\x_2 &y_2 &1 \\x_3 &y_3 &1 \end{matrix} \right| ^2={3\over4}a^4\)
(a)
*****************************************
CBSE 12th Standard Maths Subject Determinants HOT Questions 4 Mark Questions 2021 Answer Keys
-
Since a, b, c are in A.P.,
b-a = c-b = d, common difference....(1)
Now \(\Delta=\begin{vmatrix} x+1&x+2&x+a\\x+2&x+3&x+b\\x+3&x+4&x+c\end{vmatrix}\)
= \(\begin{vmatrix}x+1&x+2&x+a\\1&1&b-a\\1&1&c-b \end{vmatrix}\)
= \(\begin{vmatrix}x+1&x+2&x+a\\1&1&d\\1&1&d \end{vmatrix}\)
= 0 Which is true -
If A be the first term and R, the common ratio of G.P, then a = ARp-1, b = ARq-1 and c = ARr-1
Taking logs,
\(\left \{\begin{matrix} loga=logA+(p-1)logR, \\ logb=logA+(q-1)logR \\ logc=logA+(r-1)logR \end{matrix} \right\} \ \ .......(1)\)
= \(\begin{vmatrix} loga&p&1\\logb&q&1\\logc&r&1\end{vmatrix}\)
= \(\begin{vmatrix}logA+(p-1)logR& p&1\\logA+(q-1)logR&q&1\\ logA+(r-1)logR&r&1\end{vmatrix}\)
= \(\begin{vmatrix} loga&p&1\\logb&q&1\\logc&r&1\end{vmatrix}\)+\(\begin{vmatrix} (p-1)&p&1\\(q-1)&q&1\\(r-1)&r&1\end{vmatrix}\)
= \(logA\begin{vmatrix}1&p&1\\1&q&1\\1&r&1 \end{vmatrix}+logR\begin{vmatrix} p-1&p&1\\q-1&q&1\\r-1&r&1\end{vmatrix}\)
= \(logA(0)+logR\begin{vmatrix} 0&p&1\\0&q&1\\0&r&1\end{vmatrix}\)
= 0 + 0 which is true. -
\(\Delta=\left| \begin{matrix} { a }^{ 2 } &-{ (b-c) }^{ 2 } & bc \\ { b }^{ 2 } &-{ (c-a) }^{ 2 } & ca \\ { c }^{ 2 } &-{ (a-b) }^{ 2 } & ab \end{matrix} \right| \)
= \(-\left| \begin{matrix} { a }^{ 2 } &{ (b-c) }^{ 2 } & bc \\ { b }^{ 2 } &{ (c-a) }^{ 2 } & ca \\ { c }^{ 2 } &{ (a-b) }^{ 2 } & ab \end{matrix} \right| \)
= \(\begin{vmatrix} a^2&a^2+b^2+c^2&bc\\b^2&a^2+b^2+c^2&ca\\c^2&a^2+b^2+c^2&ab\end{vmatrix}\)
= \(-(a^2+b^2+c^2)\begin{vmatrix} a^2&1&bc\\b^2&1&ca\\c^2&1&ab\end{vmatrix}\)
= \(-(a^2+b^2+c^2)\begin{vmatrix}a^2-b^2&0&c(b-a)\\b^2-c^2&0&a(c-b)\\c^2&1&ab \end{vmatrix}\)
= \((a^2+b^2+c^2(a-b)(b-c)\begin{vmatrix}a+b&0&c\\b+c&0& -a\\c^2&1&ab \end{vmatrix}\)
\(=-(a^2+b^2+c^2)(a-b)(b-c)(-1)(a^2-ab+bc+c^2)\)
= \((a-b)(b-c)(a^2+b^2+c^2)(c-a)(c+a+b)\)
= \((b-c)(c-a)(a+b+c)({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 })\) -
\(\Delta=\left| \begin{matrix} { yz }-x^{ 2 } & { zx }-y^{ 2 } & { xy-z }^{ 2 } \\ { zx-y }^{ 2 } & { xy }-z^{ 2 } & { yz-x }^{ 2 } \\ { xy-z }^{ 2 } & { yz }-x^{ 2 } & { zx-x }^{ 2 } \end{matrix} \right| \)
\(=\begin{vmatrix} -(x^2+y^2+z^2-xy-yz-zx)&zx-y^2&xy-z^2\\-(x^2+y^2+z^2-xy-yz-zx)&xy-z^2&yz-x^2\\-(x^2+y^2+z^2-xy-yz-zx)&yz-x^2&zx-y^2\end{vmatrix}\) [Operating C1-->C1+C2+C3]
\(= -(x^2+y^2+z^2-xy-yz-zx)\begin{vmatrix}1&zx-y^2&xy-z^2\\1&xy-z^2&yz-x^2\\1&yz-x^2&zx-y^2\end{vmatrix}\) [Taking -(x2+y2+z2-xy-yz-zx) common from C1]
=-(x2+y2+z2-xy-yz-zx)
\(\begin{vmatrix}0&(x-y)(x+y+z)&(y-z)(x+y+z)\\0&(x-y)(x+y+z )&(y-z)(x+y+z)\\1&yz-x^2&zx-y^2 \end{vmatrix}\) [Operating R1-->R1-R3 and R2+R2-R3]
\(=-(x^2+y^2+z^2-xy-yz-zx)(x+y +z)\)
\(=\begin{vmatrix} 0&x-y&y-z\\0&x-z&y-x\\1&yz-x^2&zx-y^2\end{vmatrix}\) [Taking (x+y+z)common from C2and C3]
\(=-(x+y+z)(x^3+y^3+z^3-3xyz)\begin{vmatrix}0&x-y&y-z\\0&x-z&y-x \\1&yz-x^2&zx-y^2\end{vmatrix}\)
\(=-(x+y+z)(x^3+y^3+z^3-3xyz)[(z-y)(y-x)-(x-z)(x-2)]\)
\(=-(x+y+z)(x^3+y^3+z^3-3xyz)[(yz-zx-y^2+xy-x^2-zx+zx-z^2)]\) [Expanding by C1]
\(=-(x+y+z)(x^3+y^3+z^3-3xyz)[(x^2+y^2+z^2-xy-yz-zx)]\)
Hence, △ is divisible by (x+y+z) and quotient is (x3+y3+z3-3xyz)(x2+y2+z2-x-yz-zx) -
\(A={1\over2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1 \end{vmatrix}\)
But in equilateral triangle of each side equal toa, area = \(\sqrt{3}a^2\over4\)
= \({\sqrt{3}a^2\over4}={1\over2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1 \end{vmatrix}\)
\(\Rightarrow\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1 \end{vmatrix}={\sqrt{3}a^2\over2}\)
Hence,\(\left| \begin{matrix} x_1 &y_1 &1 \\x_2 &y_2 &1 \\x_3 &y_3 &1 \end{matrix} \right| ^2={3\over4}a^4\) is true.