CBSE 12th Standard Maths Subject Determinants HOT Questions 6 Mark Questions With Solution 2021
By QB365 on 28 May, 2021
QB365 Provides the HOT Question Papers for Class 12 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Determinants HOT Questions 6 Mark Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
If a \(\neq \)p b\(\neq \)q c\(\neq \)r and \(\left| \begin{matrix} p & b & c \\ a & q & c \\ a & b & r \end{matrix} \right| \) = 0 find the value of \(\frac { p }{ p-a } +\frac { q }{ q-b } +\frac { r }{ r-c } \)
(a) -
For the matrix A = \(\left[ \begin{matrix} 3 & 2 \\ 1 & 1 \end{matrix} \right] \)find the numbers a and b such that A2 +aA + bI = O. Hence find A-1.
(a) -
Solve the equation if a \(\neq \) 0 and \(\left| \begin{matrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{matrix} \right| \)
(a) -
Using matrix method, determine whether the following system of equation is consisten or inconsistent
3x - y -2z =2
2y -z = -1
3x - 5y = 3(a)
*****************************************
CBSE 12th Standard Maths Subject Determinants HOT Questions 6 Mark Questions With Solution 2021 Answer Keys
-
0
-
\(A=\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right]\)
\(\therefore A^{2}=\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right]\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right]=\left[\begin{array}{ll} 9+2 & 6+2 \\ 3+1 & 2+1 \end{array}\right]=\left[\begin{array}{ll} 11 & 8 \\ 4 & 3 \end{array}\right]\)
\(\text { Now, }\)
\(A^{2}+a A+b I=O\)
\(\Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \quad\left[\text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right]\)
\(\Rightarrow A\left(A A^{-1}\right)+a I+b\left(I A^{-1}\right)=O\)
\(\Rightarrow A I+a I+b A^{-1}=O\)
\(\Rightarrow A+a I=-b A^{-1} \)
\(\Rightarrow A^{-1}=-\frac{1}{b}(A+a I)\)
\(\text {Now, }A^{-1}=\frac{1}{|A|} a d j A=\frac{1}{1}\left[\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array}\right]\)
\(\text {We have: }\left[\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array}\right]=-\frac{1}{b}\left(\left[\begin{array}{ll} 3 & 2 \\ 1 & 1 \end{array}\right]+\left[\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right]\right)=-\frac{1}{b}\left[\begin{array}{cc} 3+a & 2 \\ 1 & 1+a \end{array}\right]=\left[\begin{array}{cc} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{array}\right]\)
Comparing the corresponding elements of the two matrices, we have:
\(-\frac{1}{b}=-1 \Rightarrow b=1 \)
\(\frac{-3-a}{b}=1 \Rightarrow-3-a=1 \Rightarrow a=-4 \)Hence, −4 and 1 are the required values of a and b respectively.
-
x = \(-\frac { a }{ 3 } \) or x = \(-\frac { a }{ 2 } \)
-
Inconsistent