CBSE 12th Standard Maths Subject Differential Equations Ncert Exemplar 4 Mark Questions 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Differential Equations Ncert Exemplar 4 Mark Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Solve the differential equation: y+ \(\frac {d}{dx}\)(xy) = s (sin x + log x)
(a) -
Solve the differential equation: (x + y) (dx - dy) = dx + dy
(a) -
If y(t) is a solution of (1 + t) \(\frac{dy}{dt}\) - ty = 1 and y(0) = -1, then show that y(1) = -\(\frac {1}{2}\)
(a) -
Find the general solution of the following differential equations :
\(\left( 1+{ y }^{ 2 } \right) +\left( x-{ e }^{ \tan ^{ -1 }{ y } } \right) \frac { dy }{ dx } =0\)(a) -
Find the equation of a curve whose tangent at any point on it, different from origin, has slope \(y+\frac{y}{x}\).
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Differential Equations Ncert Exemplar 4 Mark Questions 2021 Answer Keys
-
x2y = -x2cos x + 2x sin x + 2 cos x + \(\frac { { x }^{ 3 } }{ 3 } logx-\frac { { x }^{ 3 } }{ 9 } +c\) is the required solution.
-
\(\Rightarrow \) y - x + log |x + y| = c is the required solution.
-
Further, let t = 1, (1 + 1)y = -1 \(\Rightarrow \) y(1) = -\(\frac{1}{2}\).
-
Given, differential equation is \(\left(1+y^2\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0\)
It can be rewritten as
\(\left(1+y^2\right) \frac{d x}{d y}+x-e^{\tan ^{-1} y}=0\)
or \(\frac{d x}{d y}+\frac{1}{\left(1+y^2\right)} x=\frac{e^{\tan ^{-1} y}}{1+y^2}\)
[dividing both sides by (1 + y2)]
It is a linear differential equation of the form \(\frac{d x}{d y}+P x=Q\)
Here, \(P=\frac{1}{1+y^2} \text { and } Q=\frac{e^{\tan ^{-1} y}}{1+y^2}\)
Now, integrating factor, IF = \(e^{\int P d y}\)
\(=e^{\int \frac{1}{1+y^2} d y}=e^{\tan ^{-1} y}\)
\(\therefore\) The general solution of linear differential equation is given by
\(\begin{aligned} x \times \mathrm{IF} & =\int(Q \times \mathrm{IF}) d y+C \end{aligned}\)
\(\begin{aligned} \Rightarrow x \times e^{\tan ^{-1} y} & =\int \frac{e^{\tan ^{-1} y}}{1+y^2} \times e^{\tan ^{-1} y} d y+C \end{aligned}\)
\(\Rightarrow \quad x e^{\tan ^{-1} y}=\int \frac{e^{2 \tan ^{-1} y}}{1+y^2} d y+C\) ....(i)
On putting tan-1 y = t \(\Rightarrow \frac{1}{1+y^2} d y=d t \text { in }\)
Eq. (i), we get
\(\begin{aligned} x e^{\tan ^{-1} y} & =\int e^{2 t} d t+C \end{aligned}\)
\(\begin{aligned} \Rightarrow \quad x e^{\tan ^{-1} y} & =\frac{e^{2 t}}{2}+C \end{aligned}\)
\(\Rightarrow \quad x e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+C \quad\left[\because t=\tan ^{-1} y\right]\) -
\(\frac{d y}{d x}=y+\frac{y}{x}\)
\(y=K x e^{x}\)
4 Marks