CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions 2021
By QB365 on 31 May, 2021
QB365 Provides the Value Based Question Papers for Class 12 Maths, and also provide the detail solution for each and every Value Based Questions. Value Based Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
\(\frac { dy }{ dx } +\frac { y }{ x } =0,\) where 'x' denotes the percentage population in a city and 'y' denotes the area for living healthy life of population. Find the particular solution when \(x=100,y=1.\) Is higher density of population harmful? Justify your answer
(a) -
Suppose the growth of a population is proportional to the number present. If the population of a colony doubles in 50 months, in how many months will the population becomes triple?
(a) -
It is given that the rate at which some bacteria multiply is proportional to the instantaneous number present. If the original number of bacteria doubles in two hours, in how will it be five times?
(a) -
In a culture,the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria proportional to the number present?
(a) -
The rate of increases in the number of bacteria in a certain culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours. Also, find the time necessary of bacteria to be 10 times the number initially present.\(\left( { log }_{ e }3=1.0986,{ e }^{ 2.1972 }=9 \right) \) (approx.)
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions 2021 Answer Keys
-
We have: \(\frac { dy }{ dx } +\frac { y }{ x } =0\)
\(\Rightarrow\) \(\frac { dy }{ y } +\frac { dx }{ x } =0\)
|Variables Separable
Integrating, \(log|y|+log|x|=log|c|\)
\(\Rightarrow\) \(log|xy|=log|c|\)
\(\Rightarrow\) \(xy=c\) ..(1)
When \(x=100,y=1,\) then \((100)(1)=c\Rightarrow=c=100.\)
Putting in (1), \(xy=100\)
which is the required particular solution.
Yes, as the population increases, area for living decreases, which is very harmful to us -
Let 'x' be the population of a colony at any time t.
By the question, \(\frac { dx }{ dt } =kx\)
\(\Rightarrow \) \(\frac { dx }{ x } =k\quad dt.\)
|Variables Separable
Integrating, \(log|x| =kt\ +c\) ...(1)
When \(t=0,x={ x }_{ 0 },\)
\( \therefore log|{ x }_{ 0 }|=c\) ...(2)
When \(t=50,x=2{ x }_{ 0 },log|2{ x }_{ 0 }|+50k+c\) ...(3)
Subtracting (2) from (3), \(log|2{ x }_{ 0 }|-log|{ x }_{ 0 }|=50k\)
\(\Rightarrow log\quad 2=50k\)
\(\Rightarrow k=\frac { 1 }{ 50 } \ log2.\)
Putting in (1), \(log|x|=\frac { 1 }{ 50 } \quad log2.t+log|{ x }_{ 0 }|.\)
When \(x=3{ x }_{ 0 },\quad log|3{ x }_{ 0 }|=\frac { 1 }{ 50 } log\quad 2.t+|{ x }_{ 0 }|\)
\(\Rightarrow log\ 3=\frac { 1 }{ 50 } log\quad 2.t\Rightarrow t=50\frac { log\quad 3 }{ log\quad 2 } \)
Hence, the population becomes triple in months \(50\frac { log\quad 3 }{ log\quad 2 } \). -
Let 'x' be the bacteria at any time 't'
By the question,\(\frac { dx }{ dt } =kx\)
\(\Rightarrow \) \(\frac { dx }{ x } =k\quad dt\)
|Variables Separable
Integrating, \(log|x|=kt+c\) ...(1)
When \(t=0,x={ x }_{ 0 }\)
\(\therefore\) \(t=0,x={ x }_{ 0 }\) ...(2)
When\(t=2,x=2{ x }_{ 0 }\)
\(\therefore\) \(t=2,x=2{ x }_{ 0 }\) ...(3)
Subtracting (2) from (3), \(log|2{ x }_{ 0 }|-log|{ x }_{ 0 }|=2k\)
\(\Rightarrow \) \(log2=2k\Rightarrow k=\frac { 1 }{ 2 } log\quad 2\)
Putting in (1), \(log|x|=\frac { 1 }{ 2 } 2.t+log|{ x }_{ 0 }|\)
When \(x=5{ x }_{ 0 },log|5{ x }_{ 0 }|=2.t+log|{ x }_{ 0 }|\)
\(\Rightarrow \) \(log5=\frac { 1 }{ 2 } log\quad 2.t\)
\(\Rightarrow \) \(t=2\frac { log5 }{ log2 } \)
Hence, the number of bacteria will be five times after 2\(\frac { log5 }{ log2 } \) hours. -
Let 'y' be the number of bacteria at any time t.
By the question, \(\frac { dy }{ dt } =ky\)
\(\Rightarrow \) \(\frac { dy }{ y } =k\quad dt\)
|Variables Separable
Integrating, \(\int { \frac { dy }{ y } } =k\int { 1. } dt+c\)
\(\Rightarrow \) \(log|y|=kt+c\)
\(\Rightarrow \) \(log\quad y\quad =kt+c\) ...(1) \(\left[ \because \quad y>0 \right] \)
Let \(y={ y }_{ 0 }\left( =1,00,000 \right) \) when \(t=0\)
\(\therefore \) \(log\quad { y }_{ 0 }=0+c\Rightarrow c=log\quad { y }_{ 0 }\)
Putting in(1),\(log\quad { y }_{ 0 }=0+c\Rightarrow c=log\quad { y }_{ 0 }\)
\(\Rightarrow \) \(log\frac { y }{ { y }_{ 0 } } =kt\)...(2)
By the question, when \(log\frac { y }{ { y }_{ 0 } } =kt\)
\(\therefore \) \(log\frac { \frac { 11{ y }_{ 0 } }{ 10 } }{ { y }_{ 0 } } =2k\Rightarrow k=\frac { 1 }{ 1 } log\frac { 11 }{ 10 } .\)
Putting in (2), \(log \frac { y }{ { y }_{ 0 } } =\frac { 1 }{ 2 } \left( log\frac { 11 }{ 10 } \right) t.\)
When \(y=2{ y }_{ 0 }\left( 2,00,000 \right) ,\)
then \(log\frac { 2{ y }_{ 0 } }{ { y }_{ 0 } } =\frac { 1 }{ 2 } log\frac { 11 }{ 10 } t\)
\(\Rightarrow \) \(log2=\frac { 1 }{ 2 } log\left( \frac { 11 }{ 10 } t \right) \)
\(\Rightarrow \) \(t=\frac { 2log2 }{ log\frac { 11 }{ 10 } } \)
Hence, the bacteria count will reach \(2,00,000\) after \(\frac { 2log2 }{ log\frac { 11 }{ 10 } } \)hours. -
Let 'x' be the number of bacteria present at time 't'.
By the question, \(\frac { dx }{ dt } =kx\)
\(\Rightarrow\) \(\frac { dx }{ x } =k\quad dt\)
|Variables Separable
Integrating, \(log|x|=kt+c\)..(1)
When \(t=0,x={ x }_{ 0 }\) (say)
\(\therefore \) \(log|x|=kt+log|{ x }_{ 0 }|\)
Putting in(1), \(log|x|=kt+log|{ x }_{ 0 }|\) ...(2)
When \(t=5,x=3{ x }_{ 0 }.\)
\(\therefore \) \(log|3{ x }_{ 0 }|\quad =5kt+log|{ x }_{ 0 }|\)
\(\Rightarrow\) \(log3=5k\Rightarrow k=\frac { 1 }{ 5 } log3.\)
Putting in (2), \(log|x|=\frac { 1 }{ 5 } log\quad 3t+log|{ x }_{ 0 }|\)...(3)
(i) When \(t=10,log|x|=2log\quad 3+log|{ x }_{ 0 }|=log|9{ x }_{ 0 }|\)
\(\Rightarrow\)\(x=9{ x }_{ 0 }.\)
Hence, the bacteria will be 9 times after 10 hours.
(ii) When \(x=10{ x }_{ 0 }\)
\(\therefore\) From(3),\(log|10{ x }_{ 0 }|=\frac { 1 }{ 5 } log\quad 3.t+log|{ x }_{ 0 }|\)
\(\Rightarrow \) \(log\quad 10=\frac { 1 }{ 5 } log\quad 3.t\)
\(\Rightarrow \) \(t=5\frac { log10 }{ log3 } \)
Hence, the number of bacteria will be 10 times after \(5\frac { log10 }{ log3 } \) hours.
4 Marks