CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions With Solution 2021
By QB365 on 31 May, 2021
QB365 Provides the Value Based Question Papers for Class 12 Maths, and also provide the detail solution for each and every Value Based Questions. Value Based Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
the doctor took the temperature of a dead body at 11.30 P.M., which was 94.60 F. He took the temperature of the body again after one hour, which was 93.40 F. If the temperature of the room was 700 F, estimate the time of death. taking normal temperature of human body = 98.60 F.
(a) -
The velocity v of mass, of a rocket at time t, is given by the equation: \(m\frac { dv }{ dt } +V\frac { dm }{ dt } =0,\)Where 'V' is the constant velocity of emission. If the rocket starts from when t = 0 with mass m, prove that : \(v=Vlog\left( \frac { { m }_{ 0 } }{ m } \right) .\) Should we encourage rocket technology, why?
(a) -
It is given that the rate at which some bacteria multiply is proportional to the instantaneous number present. If the original number of bacteria doubles in two hours, in how will it be five times?
(a) -
In a culture,the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria proportional to the number present?
(a) -
The rate of increases in the number of bacteria in a certain culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours. Also, find the time necessary of bacteria to be 10 times the number initially present.\(\left( { log }_{ e }3=1.0986,{ e }^{ 2.1972 }=9 \right) \) (approx.)
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Differential Equations Value Based Questions 4 Marks Questions With Solution 2021 Answer Keys
-
[Newton's Law of Cooling: The temperature of body changes at a rate, which is proportional to the difference in temperature between that of the surrounding medium and that of the body itself.]
Let 'T' be the temperature of the body at time t.
By Newton's Law of cooling,
\(\frac { dT }{ dt } =k\ \left( T-70 \right) \)
\(\Rightarrow \frac { dT }{ T-70 } k\quad dt.\)
|Variables Separable
Integrating, \(\int { \frac { dT }{ T-70 } } =k\int { 1.dt+log|c| } \)
\(\Rightarrow log|T-70|-logc|=kt\)
\(\Rightarrow log|\frac { T-70 }{ c } |=\quad kt\quad \Rightarrow \frac { T-70 }{ c } ={ e }^{ k\quad t }\)
\(\Rightarrow T=70+c { e }^{ k\ t }\)
When \(t=0,T=94.6,\ 94.6=70+c { e }^{ 0 } \Rightarrow c=24.6\)
Putting in(1), \(t=0,T=94.6,\quad 94.6=70+c{ e }^{ 0 } \Rightarrow c=24.6\)
When \(=60,T=93.4,\quad 93.4=70+24.6\quad { e }^{ 60kt }\)
\(\Rightarrow 24.6 { e }^{ 60kt } =23.4 \Rightarrow { e }^{ 60kt }=\frac { 23.4 }{ 24.6 } =\frac { 117 }{ 123 } \)
\(\Rightarrow 60\ k=log\frac { 117 }{ 123 } \Rightarrow k=\frac { 1 }{ 60 } log\frac { 117 }{ 123 } <0\) ...(2)
Thus the time t, that has elapsed after death is given by:
\(98.6=70+(24.6){ e }^{ kt }\)
\(\Rightarrow \left( 24.6 \right) { e }^{ kt }=28.6\Rightarrow { e }^{ kt }=\frac { 28.6 }{ 24.6 } =\frac { 143 }{ 123 } \)
\(\Rightarrow \) \(t=\frac { 1 }{ k } log\frac { 143 }{ 123 } \)
\(=-3.01\)
Hence, the estimated time of death \(=11.30-3.01\)\(=8.30\) P.M. approx. -
We have: \(m\frac { dv }{ dt } +V\frac { dm }{ dt } =0\)
\(\Rightarrow m\frac { dv }{ dt } +V\frac { dm }{ dt } =0\) ...(1)
Integrating, \(\int { dv+V\int { \frac { dm }{ m } =C } } \)
\(\Rightarrow \) \(v+V\quad logm=C\)..(2)\(\left[ \because m>0 \right] \)
When \(v=0,m={ m }_{ 0 }.\)
\(\therefore\) \(0+\ V\ log{ m }_{ 0 }=C\Rightarrow C=V\ log{ m }_{ 0 }\)
Putting In (2), \(v+Vlogm=V\ log{ m }_{ 0 }\)
\(\Rightarrow\) \(v=V(log{ m }_{ 0 }-log\ m).\)
Hence, \(v=V\log\left( \frac { { m }_{ 0 } }{ m } \right) \)
We should not encourage rocket technology because they can be used nuclear warheads to attack other countries. -
Let 'x' be the bacteria at any time 't'
By the question,\(\frac { dx }{ dt } =kx\)
\(\Rightarrow \) \(\frac { dx }{ x } =k\quad dt\)
|Variables Separable
Integrating, \(log|x|=kt+c\) ...(1)
When \(t=0,x={ x }_{ 0 }\)
\(\therefore\) \(t=0,x={ x }_{ 0 }\) ...(2)
When\(t=2,x=2{ x }_{ 0 }\)
\(\therefore\) \(t=2,x=2{ x }_{ 0 }\) ...(3)
Subtracting (2) from (3), \(log|2{ x }_{ 0 }|-log|{ x }_{ 0 }|=2k\)
\(\Rightarrow \) \(log2=2k\Rightarrow k=\frac { 1 }{ 2 } log\quad 2\)
Putting in (1), \(log|x|=\frac { 1 }{ 2 } 2.t+log|{ x }_{ 0 }|\)
When \(x=5{ x }_{ 0 },log|5{ x }_{ 0 }|=2.t+log|{ x }_{ 0 }|\)
\(\Rightarrow \) \(log5=\frac { 1 }{ 2 } log\quad 2.t\)
\(\Rightarrow \) \(t=2\frac { log5 }{ log2 } \)
Hence, the number of bacteria will be five times after 2\(\frac { log5 }{ log2 } \) hours. -
Let 'y' be the number of bacteria at any time t.
By the question, \(\frac { dy }{ dt } =ky\)
\(\Rightarrow \) \(\frac { dy }{ y } =k\quad dt\)
|Variables Separable
Integrating, \(\int { \frac { dy }{ y } } =k\int { 1. } dt+c\)
\(\Rightarrow \) \(log|y|=kt+c\)
\(\Rightarrow \) \(log\quad y\quad =kt+c\) ...(1) \(\left[ \because \quad y>0 \right] \)
Let \(y={ y }_{ 0 }\left( =1,00,000 \right) \) when \(t=0\)
\(\therefore \) \(log\quad { y }_{ 0 }=0+c\Rightarrow c=log\quad { y }_{ 0 }\)
Putting in(1),\(log\quad { y }_{ 0 }=0+c\Rightarrow c=log\quad { y }_{ 0 }\)
\(\Rightarrow \) \(log\frac { y }{ { y }_{ 0 } } =kt\)...(2)
By the question, when \(log\frac { y }{ { y }_{ 0 } } =kt\)
\(\therefore \) \(log\frac { \frac { 11{ y }_{ 0 } }{ 10 } }{ { y }_{ 0 } } =2k\Rightarrow k=\frac { 1 }{ 1 } log\frac { 11 }{ 10 } .\)
Putting in (2), \(log \frac { y }{ { y }_{ 0 } } =\frac { 1 }{ 2 } \left( log\frac { 11 }{ 10 } \right) t.\)
When \(y=2{ y }_{ 0 }\left( 2,00,000 \right) ,\)
then \(log\frac { 2{ y }_{ 0 } }{ { y }_{ 0 } } =\frac { 1 }{ 2 } log\frac { 11 }{ 10 } t\)
\(\Rightarrow \) \(log2=\frac { 1 }{ 2 } log\left( \frac { 11 }{ 10 } t \right) \)
\(\Rightarrow \) \(t=\frac { 2log2 }{ log\frac { 11 }{ 10 } } \)
Hence, the bacteria count will reach \(2,00,000\) after \(\frac { 2log2 }{ log\frac { 11 }{ 10 } } \)hours. -
Let 'x' be the number of bacteria present at time 't'.
By the question, \(\frac { dx }{ dt } =kx\)
\(\Rightarrow\) \(\frac { dx }{ x } =k\quad dt\)
|Variables Separable
Integrating, \(log|x|=kt+c\)..(1)
When \(t=0,x={ x }_{ 0 }\) (say)
\(\therefore \) \(log|x|=kt+log|{ x }_{ 0 }|\)
Putting in(1), \(log|x|=kt+log|{ x }_{ 0 }|\) ...(2)
When \(t=5,x=3{ x }_{ 0 }.\)
\(\therefore \) \(log|3{ x }_{ 0 }|\quad =5kt+log|{ x }_{ 0 }|\)
\(\Rightarrow\) \(log3=5k\Rightarrow k=\frac { 1 }{ 5 } log3.\)
Putting in (2), \(log|x|=\frac { 1 }{ 5 } log\quad 3t+log|{ x }_{ 0 }|\)...(3)
(i) When \(t=10,log|x|=2log\quad 3+log|{ x }_{ 0 }|=log|9{ x }_{ 0 }|\)
\(\Rightarrow\)\(x=9{ x }_{ 0 }.\)
Hence, the bacteria will be 9 times after 10 hours.
(ii) When \(x=10{ x }_{ 0 }\)
\(\therefore\) From(3),\(log|10{ x }_{ 0 }|=\frac { 1 }{ 5 } log\quad 3.t+log|{ x }_{ 0 }|\)
\(\Rightarrow \) \(log\quad 10=\frac { 1 }{ 5 } log\quad 3.t\)
\(\Rightarrow \) \(t=5\frac { log10 }{ log3 } \)
Hence, the number of bacteria will be 10 times after \(5\frac { log10 }{ log3 } \) hours.
4 Marks