CBSE 12th Standard Maths Subject Inverse Trigonometric Functions HOT Questions Fill Ups Questions With Solution 2021
By QB365 on 28 May, 2021
QB365 Provides the HOT Question Papers for Class 12 Maths, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Inverse Trigonometric Functions HOT Questions Fill Ups Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Find the principal values of the following: \({ cos }^{ -1 }\left( \frac { \sqrt { 3 } }{ 2 } \right) \)
(a)\(\text { Let } \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y, \text { Then } \cos y=\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{6}\right)\)
We know that the range of the principal value branch of cos−1 is
\([0, \pi] \text { and } \cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\)
Therefore the priciple value of \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \text { is } \frac{\pi}{6}\) -
Find the value of the following: \({ cos }^{ -1 }\left( cos\frac { 13\pi }{ 6 } \right) \)
(a)\(\pi\)/6
*****************************************
CBSE 12th Standard Maths Subject Inverse Trigonometric Functions HOT Questions Fill Ups Questions With Solution 2021 Answer Keys
-
Let \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\theta \Rightarrow \cos \theta=\frac{\sqrt{3}}{2}\)
We know that the principal value branch of cos-1 is \( [0, \pi] \)
\(\therefore \quad \cos \theta=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6} \Rightarrow \theta=\frac{\pi}{6} \)
\(\Rightarrow \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \in[0, \pi] \)
Hence, the principal value of \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \text { is } \frac{\pi}{6}\)Let \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\theta \Rightarrow \cos \theta=\frac{\sqrt{3}}{2}\)
We know that the principal value branch of cos-1 is \( [0, \pi] \)
\(\therefore \quad \cos \theta=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6} \Rightarrow \theta=\frac{\pi}{6} \)
\(\Rightarrow \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \in[0, \pi] \)
Hence, the principal value of \(\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \text { is } \frac{\pi}{6}\) -
\( \cos ^{-1}(\cos x)=x \text { if } x \in[0, \pi], \) which is the principal value branch of cos-1x
\(\text {Here, } \frac{13 \pi}{6} \notin[0, \pi]\)
\(\text {Now, }\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) \)
\(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right]=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right], \text { where } \frac{\pi}{6} \in[0, \pi]\)
\(\therefore \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]=\frac{\pi}{6}\)\( \cos ^{-1}(\cos x)=x \text { if } x \in[0, \pi], \) which is the principal value branch of cos-1x
\(\text {Here, } \frac{13 \pi}{6} \notin[0, \pi]\)
\(\text {Now, }\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) \)
\(\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right]=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right], \text { where } \frac{\pi}{6} \in[0, \pi]\)
\(\therefore \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]=\frac{\pi}{6}\)