CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Find the vector and the Cartesian equations of the line through the point (5, 2, – 4) and which is parallel to the vector \(3 \hat{i}+2 \hat{j}-8 \hat{k}\)
(a) -
Show that the equation of a plane which meets the axes in A,B and C and the given centroid of triangle ABC is the point \((\alpha ,\beta ,\gamma )\) is \(\frac { x }{ \alpha } +\frac { y }{ \beta } +\frac { z }{ \gamma } =3\)
(a) -
If a variable line in two adjacent positions has direction cosines l,m,n,\(l+\delta l,m+\delta m,n+\delta n\) and show that the small angle \(\delta \theta \) between two positions is given by \({ (\delta \theta ) }^{ 2 }={ (\delta l) }^{ 2 }+(\delta m)^{ 2 }+{ (\delta n) }^{ 2 }\).
(a) -
Show that the lines \(\frac { x-1 }{ 2 } =\frac { y-2 }{ 3 } =\frac { z-3 }{ 4 } \) and \(\frac { x-4 }{ 5 } =\frac { y-1 }{ 2 } =z\) intersect Also, find the point of intersection.
(a) -
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x +y - z + 5 = 0.
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions 2021 Answer Keys
-
We have
\(\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{j}-8 \hat{k}\)
Therefore, the vector equation of the line is
\(\vec{r}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})\)
Now, \(\vec{r}\) is the position vector of any point P(x, y, z) on the line.
\(x \hat{i}+y \hat{j}+z \hat{k}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})\)
\(=(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k}\)
Eliminating \(\lambda\), we get
\(\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}\) -
Substitute in (i) we get \(\frac { x }{ 3\alpha } +\frac { y }{ 3\beta } +\frac { z }{ 3\gamma } =1\Rightarrow \frac { x }{ \alpha } +\frac { y }{ \beta } +\frac { z }{ \gamma } =3\)
-
Since \(l, m, n \text { and } l+\delta l, m+\delta m, n+\delta n\) are direction cosines of a variable line in two different positions,therefore,
\(l^{2}+m^{2}+n^{2}=1\)
\(\text { and }(l+\delta l)^{2}+(m+\delta m)^{2}+(n+\delta n)^{2}=1\)
\(\text { Now, }(l+\delta l)^{2}+(m+\delta m)^{2}+(n+\delta n)^{2}=1\)
\(\Rightarrow\left(l^{2}+m^{2}+n^{2}\right)+2(l \cdot \delta l+m \cdot \delta m+n \cdot \delta n) \)
\(+(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}=1[\text { from }(i i)] \)
\(\Rightarrow 1+2(l \delta l+m \delta m+n \delta n)+(\delta l)^{2} \)
\(+(\delta m)^{2}+(\delta n)^{2}=1[\text { using }(i)] \)
\(\Rightarrow 2(l \delta l+m \delta m+n \delta n)=-\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \)
\(\Rightarrow(l \delta l+m \delta m+n \delta n)=-\frac{1}{2}\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \)
\(\text { Also } \cos (\delta \theta)=l(l+\delta l)+m(m+\delta m)+n(n+\delta) \)
\(=\left(l^{2}+m^{2}+n^{2}\right)+(l \delta l+m \delta m+n \delta n) \)
\(=1-\frac{1}{2}\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \quad[\text { using }(i) \text { and (iii)] }\)
\(\Rightarrow 2(1-\cos \delta \theta)=(\delta I)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\Rightarrow 2 \times 2 \sin ^{2} \frac{\delta \theta}{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\left[\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right]\)
\(\Rightarrow 4\left[\frac{\delta \theta}{2}\right]^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\text { [if } \theta \text { is small, then } \sin \theta \rightarrow \theta]\)
\(\Rightarrow(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2} \)
which is true. -
If lines intersect then \(\left(\vec{a}_{2}-\overrightarrow{a_{1}}\right) \cdot\left(\vec{b}_{1} \times \overrightarrow{b_{2}}\right)=0\)
\(\text { i.e. }\left|\begin{array}{ccc} 4-1 & 1-2 & 0-3 \\ 2 & 3 & 4 \\ 5 & 2 & 1 \end{array}\right|=0 \)
\(\Rightarrow 3(3-8)+1(2-20)-3(4-15)=0 \)
\(\Rightarrow-15-18+33=0, \text { true }\)
Hence, the lines intersect
For point of intersection, take general points on the two
\(\text {lines as }(2 \lambda+1,3 \lambda+2,4 \lambda+3)\text { and }(5 \mu+4,2 \mu+1, \mu)\)
If lines intersect then for same values \(\lambda \text { and } \mu \text {. }\)
\(2 \lambda+1=5 \mu+4 \Rightarrow 2 \lambda-5 \mu=3 \)
\(3 \lambda+2=2 \mu+1 \Rightarrow 3 \lambda-2 \mu=-1 \)
\(4 \lambda+3=\mu \Rightarrow 4 \lambda-\mu=-3\)
Solving \((i i) \text { and (iii) for } \lambda, \mu \text {, we get }\)
\(\lambda=-1, \mu=-1\)
Substituting in (iv), we get -4+1 = -3 true
Hence, for \(\lambda=-1, \mu=-1 \) the lines intersect.
Substituting in \( (i) \text {, for } \lambda=-1 \text {, }\)
Point of intersection is \( (-2+1,-3+2,-4+3) \text {, i.e }(-1,-1,-1) \) -
The equation of a plane through the line of intersection of the planes
\(x+2 y+3 z-4=0 \text { and } 2 x+y-z+5=0\) is
\((x+2 y+3 z+4)+\lambda(2 x+y-z+5)=0\)
As, this is perpendicular to the plane
\(5 x+3 y+6 z+8=0\)
\(\therefore \quad 5(1+2 \lambda)+3(2+\lambda)+6(3-\lambda)=0\)
\(\left[\because a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right]\)
\(\Rightarrow 5+10 \lambda+6+3 \lambda+18-6 \lambda=0\)
\(\lambda=-\frac{29}{7}\)
Then, from Eq. (i), we get
\(x\left[1+2\left(\frac{-29}{7}\right)\right]+y\left(2-\frac{29}{7}\right)+z\left(\frac{29}{7}+3\right)-4+5\left(\frac{-29}{7}\right)=0\)
\(\Rightarrow x(7-58)+y(14-29)+z(29+21)-28-145=0\)
\(\Rightarrow -51 x-15 y+50 z-173=0\)
Hence, the required equation of plane is
\(51 x+15 y-50 z+173=0\)
4 Marks