CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions With SOlution 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions With SOlution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Find the vector and the Cartesian equations of the line through the point (5, 2, – 4) and which is parallel to the vector \(3 \hat{i}+2 \hat{j}-8 \hat{k}\)
(a) -
Show that the equation of a plane which meets the axes in A,B and C and the given centroid of triangle ABC is the point \((\alpha ,\beta ,\gamma )\) is \(\frac { x }{ \alpha } +\frac { y }{ \beta } +\frac { z }{ \gamma } =3\)
(a) -
If a variable line in two adjacent positions has direction cosines l,m,n,\(l+\delta l,m+\delta m,n+\delta n\) and show that the small angle \(\delta \theta \) between two positions is given by \({ (\delta \theta ) }^{ 2 }={ (\delta l) }^{ 2 }+(\delta m)^{ 2 }+{ (\delta n) }^{ 2 }\).
(a) -
(a) Find the image of the point (1,6,3) in the line \(\frac { x }{ 1 } =\frac { y-1 }{ 2 } =\frac { z-2 }{ 3 } .\)
(b) Also write the equation of the line joining the: given point and its image and find the length of the: segment joining the given point and its image(a) -
Show that the lines \(\frac { x-1 }{ 2 } =\frac { y-2 }{ 3 } =\frac { z-3 }{ 4 } \) and \(\frac { x-4 }{ 5 } =\frac { y-1 }{ 2 } =z\) intersect Also, find the point of intersection.
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Three Dimensional Geometry Ncert Exemplar 4 Marks Questions With SOlution 2021 Answer Keys
-
We have
\(\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{j}-8 \hat{k}\)
Therefore, the vector equation of the line is
\(\vec{r}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})\)
Now, \(\vec{r}\) is the position vector of any point P(x, y, z) on the line.
\(x \hat{i}+y \hat{j}+z \hat{k}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})\)
\(=(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k}\)
Eliminating \(\lambda\), we get
\(\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}\) -
Substitute in (i) we get \(\frac { x }{ 3\alpha } +\frac { y }{ 3\beta } +\frac { z }{ 3\gamma } =1\Rightarrow \frac { x }{ \alpha } +\frac { y }{ \beta } +\frac { z }{ \gamma } =3\)
-
Since \(l, m, n \text { and } l+\delta l, m+\delta m, n+\delta n\) are direction cosines of a variable line in two different positions,therefore,
\(l^{2}+m^{2}+n^{2}=1\)
\(\text { and }(l+\delta l)^{2}+(m+\delta m)^{2}+(n+\delta n)^{2}=1\)
\(\text { Now, }(l+\delta l)^{2}+(m+\delta m)^{2}+(n+\delta n)^{2}=1\)
\(\Rightarrow\left(l^{2}+m^{2}+n^{2}\right)+2(l \cdot \delta l+m \cdot \delta m+n \cdot \delta n) \)
\(+(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}=1[\text { from }(i i)] \)
\(\Rightarrow 1+2(l \delta l+m \delta m+n \delta n)+(\delta l)^{2} \)
\(+(\delta m)^{2}+(\delta n)^{2}=1[\text { using }(i)] \)
\(\Rightarrow 2(l \delta l+m \delta m+n \delta n)=-\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \)
\(\Rightarrow(l \delta l+m \delta m+n \delta n)=-\frac{1}{2}\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \)
\(\text { Also } \cos (\delta \theta)=l(l+\delta l)+m(m+\delta m)+n(n+\delta) \)
\(=\left(l^{2}+m^{2}+n^{2}\right)+(l \delta l+m \delta m+n \delta n) \)
\(=1-\frac{1}{2}\left[(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\right] \quad[\text { using }(i) \text { and (iii)] }\)
\(\Rightarrow 2(1-\cos \delta \theta)=(\delta I)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\Rightarrow 2 \times 2 \sin ^{2} \frac{\delta \theta}{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\left[\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right]\)
\(\Rightarrow 4\left[\frac{\delta \theta}{2}\right]^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}\)
\(\text { [if } \theta \text { is small, then } \sin \theta \rightarrow \theta]\)
\(\Rightarrow(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2} \)
which is true. -
(a) Let P be the given point (1, 6, 3) and M, the foot of perpendicular from P on the given line AB
\(i.e.\quad \frac { x }{ 1 } =\frac { y-1 }{ 2 } =\frac { z-2 }{ 3 } (=k(say))\)
Any point on the given line is:
(k , 1+ 2k , 2 + 3k).
For some value of k, let the point be M.
:. Direction-ratios of PM are:
< k - 1 , 1 + 2k - 6, 2 + 3k - 3 >
i.e. < k - 1, 2k - 5, 3k - 1 > .
Since \(PM\bot AB\) ,
:. (1) (k-l) + (2) (2k- 5) + (3) (3k-l) = 0
\(\Rightarrow\)k - 1 + 4k - 10 + 9k - 3 = 0
\(\Rightarrow\) 14k = 14 \(\Rightarrow\) k = 1.
:. Foot of perpendicular Mis (1,1+2,2+3) i.e. (1,3,5).
Let \(P'(\alpha ,\beta ,\gamma )\) be the image of P in the given line.
Then M is the mid-point of [PP']
\(\frac { \alpha +1 }{ 2 } =1\frac { \beta +6 }{ 2 } =3,\frac { \gamma +3 }{ 2 } =5\)
\(\alpha +1=2,\beta +6=6,\gamma +3=10\)
\(\Rightarrow \alpha =1,\beta =0,\gamma =7\)
Hence the reqd image is(1,0,7).
(b) (i) The equations of PP' are:
\(\frac { x-1 }{ 1-1 } =\frac { y-6 }{ 0-6 } =\frac { z-3 }{ 7-3 } \)
\(i.e.\quad \frac { x-1 }{ 0 } =\frac { y-6 }{ -6 } =\frac { z-3 }{ 4 } \)
\(\Rightarrow \frac { x-1 }{ 1-1 } =\frac { y-6 }{ -3 } =\frac { z-3 }{ 2 } \)
(ii) Length od segment [PP']
\(\sqrt { { \left( 1-1 \right) }^{ 2 }+{ \left( 0-6 \right) }^{ 2 }+{ \left( 7-3 \right) }^{ 2 } } \)
\(=\sqrt { 0+36+16 } =\sqrt { 52 } =2\sqrt { 13 } units.\) -
If lines intersect then \(\left(\vec{a}_{2}-\overrightarrow{a_{1}}\right) \cdot\left(\vec{b}_{1} \times \overrightarrow{b_{2}}\right)=0\)
\(\text { i.e. }\left|\begin{array}{ccc} 4-1 & 1-2 & 0-3 \\ 2 & 3 & 4 \\ 5 & 2 & 1 \end{array}\right|=0 \)
\(\Rightarrow 3(3-8)+1(2-20)-3(4-15)=0 \)
\(\Rightarrow-15-18+33=0, \text { true }\)
Hence, the lines intersect
For point of intersection, take general points on the two
\(\text {lines as }(2 \lambda+1,3 \lambda+2,4 \lambda+3)\text { and }(5 \mu+4,2 \mu+1, \mu)\)
If lines intersect then for same values \(\lambda \text { and } \mu \text {. }\)
\(2 \lambda+1=5 \mu+4 \Rightarrow 2 \lambda-5 \mu=3 \)
\(3 \lambda+2=2 \mu+1 \Rightarrow 3 \lambda-2 \mu=-1 \)
\(4 \lambda+3=\mu \Rightarrow 4 \lambda-\mu=-3\)
Solving \((i i) \text { and (iii) for } \lambda, \mu \text {, we get }\)
\(\lambda=-1, \mu=-1\)
Substituting in (iv), we get -4+1 = -3 true
Hence, for \(\lambda=-1, \mu=-1 \) the lines intersect.
Substituting in \( (i) \text {, for } \lambda=-1 \text {, }\)
Point of intersection is \( (-2+1,-3+2,-4+3) \text {, i.e }(-1,-1,-1) \)
4 Marks