CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 3 Mark Questions 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 3 Mark Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Find all vectors of magnitude 10\(\sqrt { 3 }\) that are perpendicular to the plane of:
\(\overset { \wedge }{ i } +2\overset { \wedge }{ j } +\overset { \wedge }{ k } \ and\ -\overset { \wedge }{ i } +3\overset { \wedge }{ j } +4\overset { \wedge }{ k } \)(a) -
Using vector, find the value of 'k' such that the point: (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
(a) -
If A,B,C are position vectors: \(\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, \hat{i}-2 \hat{j}+\hat{k}\)
Respectively, find the projection of \(\overset { \rightarrow }{ AB } \) along \(\overset { \rightarrow }{ CD } \).(a) -
If \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are perpendicular vectors, \(|\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } |=13\) and \(|\overset { \rightarrow }{ a }|\) = 5, then find the value of |\(\overset { \rightarrow }{ b } \)|.
(a) -
If \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are two unit vectorssuch that \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \) is also a unit vector, then find the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \).
(a) -
if \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0\) and \(\overset { \rightarrow }{ |a| } =3,\overset { \rightarrow }{ |b| } =7\ and\ \overset { \rightarrow }{ |c| } =7\), Find the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \).
(a) -
Find a vector \(\overset { \rightarrow }{ a } \) of magnitude \(5\sqrt { 2 } \) making an angle \(\pi\over4\) with x-axis ,\(\pi\over2\) with y-axis and an angle '\(\theta\)' with z-axis
(a) -
Lagrange's identify prove that : \({( }{ \overrightarrow { a } *\overrightarrow { b) } }^{ 2 }=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } -{ ( }{ \overrightarrow { a } .\overrightarrow { b) } }^{ 2 }\)
(a) -
Find the volume of parallelopiped whose sides are given by vectors: \(2\overset { \wedge }{ i } -3\overset { \wedge }{ j } +4\overset { \wedge }{ k } ,\overset { \wedge }{ i } +2\overset { \wedge }{ j } -\overset { \wedge }{ k } and3\overset { \wedge }{ i } -\overset { \wedge }{ j } +2\overset { \wedge }{ k } \)
(a) -
Show that the four points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.
(a)
3 Marks
*****************************************
CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 3 Mark Questions 2021 Answer Keys
-
Let \(\overset { \rightarrow }{ a } =\overset { \wedge }{ i } +2\overset { \wedge }{ j } +\overset { \wedge }{ k } \ and\ \overset { \rightarrow }{ b } =-\overset { \wedge }{ i } +3\overset { \wedge }{ j } +4\overset { \wedge }{ k } \)
Then \(\overset { \rightarrow }{ a } *\overset { \rightarrow }{ b } =\left| \begin{matrix} \overset { \wedge }{ i } & \overset { \wedge }{ j } & \overset { \wedge }{ k } \\ 1 & 2 & 1 \\ -1 & 3 & 4 \end{matrix} \right| \)
\(\therefore |\overset { \rightarrow }{ a } *\overset { \rightarrow }{ b } |=\sqrt { { (5) }^{ 2 }+{ (-5) }^{ 2 }+{ (5) }^{ 2 } } =\sqrt { { 3(5) }^{ 2 } } \)
\(\pm 10\sqrt { 3 } \left( \frac { 5\overset { \wedge }{ i } -5\overset { \wedge }{ j } +5\overset { \wedge }{ k } }{ 5\sqrt { 3 } } \right) i.e\pm 10(\overset { \wedge }{ i } -\overset { \wedge }{ j } +\overset { \wedge }{ k } )\)
\(\therefore\) The unit vector perpendicular to the plane \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) is given by:
Hence, the vector of magnitude 10\(\sqrt { 3 }\) that are perpendicular to the plane of \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are -
Let \(\overset { \rightarrow }{ a } =k\overset { \wedge }{ i } -10\overset { \wedge }{ j } +3\overset { \wedge }{ k } ,\) and \(\overset { \rightarrow }{ b } =\overset { \wedge }{ i } -\overset { \wedge }{ j } +3\overset { \wedge }{ k } \) and \(\overset { \rightarrow }{ c } =3\overset { \wedge }{ i } +5\overset { \wedge }{ j } +3\overset { \wedge }{ k } \)
the given points are colinear if \(\left| \begin{matrix} k & -10 & 3 \\ 1 & -1 & 3 \\ 3 & 5 & 3 \end{matrix} \right| \)
If k(-3-15) +10(3-9) + 3(5+3) = 0
If -8k - 60 + 24 = 0
If 18k = -36
If k = -2 -
Here \(\overset { \rightarrow }{ AB } =(2\overset { \wedge }{ i } -\overset { \wedge }{ j } +3\overset { \wedge }{ k } )-(\overset { \wedge }{ i } +\overset { \wedge }{ j } -\overset { \wedge }{ k } )\)
\(=\overset { \wedge }{ i } -2\overset { \wedge }{ j } +4\overset { \wedge }{ k } \)
and \(\overset { \rightarrow }{ CD } =(3\overset { \wedge }{ i } -2\overset { \wedge }{ j } +\overset { \wedge }{ k } )-(2\overset { \wedge }{ i } -3\overset { \wedge }{ k } )\)
\(=\overset { \wedge }{ i } -2\overset { \wedge }{ j } +4\overset { \wedge }{ k } \)
\(\therefore\) The projcetionj of \(\overset { \rightarrow }{ AB } \) along \(\overset { \rightarrow }{ CD } \) \(=\frac { \overset { \rightarrow }{ AB } .\overset { \rightarrow }{ CD } }{ |\overset { \rightarrow }{ CD } | } \)
\(=\frac { (\overset { \wedge }{ i } -2\overset { \wedge }{ j } +4\overset { \wedge }{ k } ).(\overset { \wedge }{ i } -2\overset { \wedge }{ j } +4\overset { \wedge }{ k } ) }{ |\overset { \wedge }{ i } -2\overset { \wedge }{ j } +4\overset { \wedge }{ k } | } \)
\(=\frac { (1)(1)+(-2)(-2)+(4)(4) }{ \sqrt { 1+4+16 } } =\frac { 1+4+16 }{ \sqrt { 21 } } =\frac { 21 }{ \sqrt { 21 } } =\sqrt { 21 } \) -
Given, \(|\vec{a}+\vec{b}|=13 \text { and }|\vec{a}|=5\)
Now, \((\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)
\(\begin{array}{cl} \Rightarrow \quad & |\vec{a}+\vec{b}|^2=|\vec{a}|^2+0+0+|\vec{b}|^2 \end{array}\)
\(\begin{array}{cl} {\left[\because \vec{x} \cdot \vec{x}=|\vec{x}|^2, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=0 \text { as } \vec{a} \perp \vec{b}\right]} \end{array}\)
\(\begin{array}{ll} \Rightarrow & (13)^2=(5)^2+|\vec{b}|^2 \end{array}\)
\(\begin{array}{ll} \Rightarrow & 169=25+\left.|\vec{b}|^2 \Rightarrow|69-25=| \vec{b}\right|^2 \end{array}\)
\(\begin{array}{ll} \Rightarrow & 144=|\vec{b}|^2 \Rightarrow|\vec{b}|=12 \end{array}\)
[\(\because\) length cannot be '-' ve] -
We have : \(\Rightarrow { \overset { \rightarrow }{ |a| } =1=\overset { \rightarrow }{ |b| } }\ and\ \overset { \rightarrow }{ |a| } +\overset { \rightarrow }{ |b| } =1\)
sqaring \(|\overset { \rightarrow }{ a } +{ \overset { \rightarrow }{ { b| }^{ 2 } } }=1\Rightarrow (\overset { \rightarrow }{ a } +{ \overset { \rightarrow }{ { b) }^{ 2 } } }\)
\(\Rightarrow \overset { \rightarrow }{ { b| }^{ 2 } } +\overset { \rightarrow }{ { b| }^{ 2 } } +2|\overset { \rightarrow }{ a| } |\overset { \rightarrow }{ b| } =1\)
\( \Rightarrow { a }^{ 2 }+{ b }^{ 2 }+2|\overset { \rightarrow }{ a| } |\overset { \rightarrow }{ b| } cos\theta =1\)
Where '\(\theta \)' is the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \)
\(\Rightarrow 1+1+2(1)(1)cos\theta =1\)
\(\Rightarrow cos\theta =-\frac { 1 }{ 2 } \)
Hence, \(\theta =120°\) -
Since \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0\)
\(\therefore\) \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } =-\overset { \rightarrow }{ c } \)
\(\Rightarrow { \overset { \rightarrow }{ a } }^{ 2 }+{ \overset { \rightarrow }{ b } }^{ 2 }+2\overset { \rightarrow }{ a } .\overset { \rightarrow }{ b } ={ \overset { \rightarrow }{ c } }^{ 2 }\)
\(\Rightarrow { \overset { \rightarrow }{ |a| } }^{ 2 }+{ \overset { \rightarrow }{ |b| } }^{ 2 }+2\overset { \rightarrow }{ |a| } \overset { \rightarrow }{ |b| } cos\theta ={ \overset { \rightarrow }{ |c| } }^{ 2 }\)
Where '\(\theta\)' is the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \).
\(\Rightarrow \) (3)2 + (5)2 + 2(3)(5) cos \(\theta\)= (7)2
\(\Rightarrow \) 9 + 25 + 30 + cos \(\theta\)= 49
\(\Rightarrow \) 30 cos \(\theta\) = 49-34 \(\Rightarrow \) cos \(\theta\) \(1\over2 \)
\(\Rightarrow \) \(\theta\) = 60\(°\)
hence, the angle between \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) is 60\(°\) -
Here, we have \(l=\cos \frac{\pi}{4}, m=\cos \frac{\pi}{2} \text { and } n=\cos \theta\)
\(\Rightarrow l=\frac{1}{\sqrt{2}}, m=0 \text { and } n=\cos \theta\)
We know that, l2 + m2 + n2 = 1
\(\begin{aligned} \Rightarrow \quad\left(\frac{1}{\sqrt{2}}\right)^2+(0)^2+n^2=1 \Rightarrow \frac{1}{2}+n^2=1 \end{aligned}\)
\(\begin{aligned} \Rightarrow \quad n^2=1-\frac{1}{2}=\frac{1}{2} \Rightarrow n= \pm \frac{1}{\sqrt{2}} \Rightarrow n=\frac{1}{\sqrt{2}} \end{aligned}\)
[\(\because\) \(\theta\) is an acute angle with Z-axis]
\(\therefore \quad \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}\)
Thus, the DC's of a line are \(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\)
\(\begin{aligned} \therefore \text { Vector } \vec{a} & =|\vec{a}|((\hat{i}+m \hat{j}+n \hat{k}) \end{aligned}\)
\(\begin{aligned} = & 5 \sqrt{2}\left(\frac{1}{\sqrt{2}} \hat{i}+(0) \hat{j}+\frac{1}{\sqrt{2}} \hat{k}\right)[\because|\vec{a}|=5 \sqrt{2}, \text { given }] \end{aligned}\)
\(\begin{aligned} 5 \hat{i}+5 \hat{k} \end{aligned}\) -
\({ ( }{ \overrightarrow { a } *\overrightarrow { b) } }^{ 2 }={ \overset { \rightarrow }{ { (|a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } sin\theta { \overrightarrow { n } ) }^{ 2 } }\)
\(=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } sin\theta { \overrightarrow { n } }^{ 2 }=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } sin\theta { \overrightarrow { n } }^{ 2 }\) \([\because { \overrightarrow { n } }^{ 2 }=\overrightarrow { n } .\overrightarrow { n } =(1)cos0°=1]\)
\(=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } (1-{ cos }^{ 2 }°\theta )\)
\(=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } -\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |b| }^{ 2 } } { cos }^{ 2 }°\theta \)
\(=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |{ b }| }^{ 2 } } -{ (\overrightarrow { a } .\overrightarrow { b } ) }^{ 2 }{ cos }^{ 2 }°\theta \)
\(=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |{ b }^{ 2 }| }^{ 2 } } -{ (\overrightarrow { a } .\overrightarrow { b } ) }^{ 2 }\)
Other (I) \({ (\overrightarrow { a } .\overrightarrow { b } ) }^{ 2 }=\overset { \rightarrow }{ { |a| }^{ 2 } } \overset { \rightarrow }{ { |{ b }| }^{ 2 } } -{ (\overrightarrow { a } *\overrightarrow { b } ) }^{ 2 }\)
(II) \({ (\overrightarrow { a } *\overrightarrow { b } ) }^{ 2 }+{ (\overrightarrow { a } .\overrightarrow { b } ) }^{ 2 }=\overset { \rightarrow }{ { |a| } } \overset { \rightarrow }{ { |{ b }| }^{ 2 } } \) -
Let
\(\overset { \rightarrow }{ a } =2\overset { \wedge }{ i } -3\overset { \wedge }{ j } +4\overset { \wedge }{ k } ,\quad \overset { \rightarrow }{ b } =\overset { \wedge }{ i } +2\overset { \wedge }{ j } -\overset { \wedge }{ k } \)
\(\overset { \rightarrow }{ c } =3\overset { \wedge }{ i } -\overset { \wedge }{ j } +2\overset { \wedge }{ k } \)
\(\therefore\) Volume of the paralleopiped \(=[\overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } ]\)
\(=\left| \begin{matrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{matrix} \right| \)
\(=2(4-1)+3(2+3)+4(-1-6)\) [Expanding by R1 ]
\(=6+15-28=-7=7\) [rejecting -ve sign] -
\(\overset { \rightarrow }{ AB } =-4\overset { \wedge }{ i } -6\overset { \wedge }{ j } -2\overset { \wedge }{ k } \)
\(\overset { \rightarrow }{ BC } =3\overset { \wedge }{ i } +10\overset { \wedge }{ j } +52\overset { \wedge }{ k } \)
\(\overset { \rightarrow }{ CD } =-7\overset { \wedge }{ i } -5\overset { \wedge }{ j }\)
The four points are coplanar if \(\overset { \rightarrow }{ AB } ,\overset { \rightarrow }{ BC } ,\overset { \rightarrow }{ CD } \) are coplanar.
If \(\left[ \overset { \rightarrow }{ AB } ,\overset { \rightarrow }{ BC } ,\overset { \rightarrow }{ CD } \right] =0\quad i.e.if\left| \begin{matrix} -4 & -6 & -2 \\ 3 & 10 & 5 \\ -7 & -5 & 0 \end{matrix} \right| =0\)
If -4(0 + 25) + 6(0 + 35) -2(-15 + 70) = 0
If -100 + 210 - 110 = 0
If 0 = 0, which is true.
3 Marks