CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 4 Mark Questions With Solution 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 12 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 4 Mark Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
If \(\overrightarrow { a } =\hat { i } -\hat { j } +7\hat { k } \) and \(\overrightarrow { b } =5\hat { i } -\hat { j } +\lambda \hat { k } \) then find the value of \(\lambda\) so that the vectors \(\overrightarrow { a } +\overrightarrow { b } \ and\ \overrightarrow { a } -\overrightarrow { b } \) are orthogonal.
(a) -
If \(\overrightarrow { a } \times \overrightarrow { b } =\overrightarrow { a } \times \overrightarrow { c } \ and\ \overrightarrow { a } \times \overrightarrow { c } =\overrightarrow { b } \times \overrightarrow { d } \) prove that \(\overrightarrow { a } -\overrightarrow { d } \) is parallel to \(\overrightarrow { b } -\overrightarrow { c } \) provided \(\overrightarrow { a } \neq \overrightarrow { d } \ and\ \overrightarrow { b } \neq \overrightarrow { c } \)
(a) -
It is given that:\(\overset { \rightarrow }{ x } =\frac { \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } ,\overset { \rightarrow }{ y } \frac { \overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } and\ \overset { \rightarrow }{ z } =\frac { \overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } \) where \(\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c } \) are non-coplanar vectors.
(a) -
If a vector \(\vec{r}\) has magnitude 14and direction ratios 2, 3 and - 6. Then, find the direction cosines and components of \(\vec{r}\)given that \(\vec{r}\) makes an acute angle with x-axis.
(a) -
If the three vectors \(\vec{a}, \vec{b} \text { and } \vec{c}\) are given as \(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \text { and } c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}\) Then, show that \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\).
(a)
4 Marks
*****************************************
CBSE 12th Standard Maths Subject Vector Algebra Ncert Exemplar 4 Mark Questions With Solution 2021 Answer Keys
-
Given, \(\vec{a}=\hat{i}-\hat{j}+7 \hat{k} \text { and } \vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}\)
Now, \(\vec{a}+\vec{b}=6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}\)
and \(\vec{a}-\vec{b}=-4 \hat{i}+(7-\lambda) \hat{k}\)
\(\because(\vec{a}+\vec{b}) \text { and }(\vec{a}-\vec{b})\) are orthogonal.
\(\begin{aligned} \therefore & (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}) =0 \end{aligned}\)
\(\begin{aligned} \Rightarrow & {[6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}] \cdot[-4 \hat{i}+(7-\lambda) \hat{k}] } =0 \end{aligned}\)
\(\begin{aligned} \Rightarrow & -24+49-\lambda^2 =0 \end{aligned}\)
\(\begin{aligned} \Rightarrow & \lambda^2 =25 \end{aligned}\)
\(\begin{aligned} \Rightarrow & \lambda = \pm 5 \end{aligned}\) -
\((\overrightarrow { a } -\overrightarrow { d } )\) x \((\overrightarrow { b } -\overrightarrow { c } )\)
\(=\overrightarrow { a } *\overrightarrow { b } -\overrightarrow { a } *\overrightarrow { c } -\overrightarrow { d } *\overrightarrow { b } +\overrightarrow { d } *\overrightarrow { c } \)
\(=\overrightarrow { c } *\overrightarrow { d } -\overrightarrow { b } *\overrightarrow { d } -\overrightarrow { d } *\overrightarrow { b } +\overrightarrow { d } -\overrightarrow { c } \)
\([\because \overrightarrow { a } *\overrightarrow { b } =\overrightarrow { c } -\overrightarrow { d } and\overrightarrow { a } *\overrightarrow { c } =\overrightarrow { b } *\overrightarrow { d } ]\)
\(=\overrightarrow { c } *\overrightarrow { d } -\overrightarrow { b } *\overrightarrow { d } +\overrightarrow { b } *\overrightarrow { d } -\overrightarrow { c } *\overrightarrow { d } =\overrightarrow { 0 } \)
Hence, \((\overrightarrow { a } -\overrightarrow { d } )\) is parallel to \((\overrightarrow { b } -\overrightarrow { c } )\) -
\(\overset { \rightarrow }{ x } .\left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right) +\overset { \rightarrow }{ y } .\left( \overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } \right) +\overset { \rightarrow }{ z } .\left( \overset { \rightarrow }{ c } +\overset { \rightarrow }{ a } \right) \)
\(\\ =\frac { \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } .\left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right) +\frac { \overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } .\left( \overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } \right) +\frac { \overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } .\left( \overset { \rightarrow }{ c } +\overset { \rightarrow }{ a } \right) \)
\(=\frac { 1 }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } \left[ (\overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } ).\overset { \rightarrow }{ a } +(\overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } ).\overset { \rightarrow }{ b } +(\overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } ).\overset { \rightarrow }{ b } +(\overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } ).\overset { \rightarrow }{ c } +(\overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } ).\overset { \rightarrow }{ c } +(\overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } ).\overset { \rightarrow }{ a } \right] \)
\(=\frac { 1 }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } \left[ \left[ \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \overset { \rightarrow }{ a } \right] +\left[ \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \overset { \rightarrow }{ b } \right] +\left[ \overset { \rightarrow }{ c } \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \right] +\left[ \overset { \rightarrow }{ c } \overset { \rightarrow }{ a } \overset { \rightarrow }{ c } \right] +\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] +\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ a } \right] \right] \)
\(=\frac { 1 }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } \left[ \left[ \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \overset { \rightarrow }{ a } \right] +0+\left[ \overset { \rightarrow }{ c } \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \right] +0+\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] +0 \right] \)
\(=\frac { 3\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } =3.\) -
Given,\(|\vec{r}|=14\) and if \(\vec{r}=a \hat{i}+b \hat{j}+c \hat{k}\) then \(a=2 \lambda, b=3 \lambda\) \(\text { and } c=-6 \lambda \text { for some } \lambda \neq 0 \text { . }\)
\(\therefore \text { Direction cosines } l, m \text { and } n \text { are } l=\frac{a}{|\vec{r}|}=\frac{2 \lambda}{14}=\frac{\lambda}{7}\)
\(m=\frac{b}{|\vec{r}|}=\frac{3 \lambda}{14} \text { and } n=\frac{c}{|\vec{r}|}=\frac{-6 \lambda}{14}=\frac{-3 \lambda}{7}\)
Also, we know that \(l^{2}+m^{2}+n^{2}=1\)
\( \therefore \frac{\lambda^{2}}{49}+\frac{9 \lambda^{2}}{196}+\frac{9 \lambda^{2}}{49}=1 \)
\(\Rightarrow \frac{4 \lambda^{2}+9 \lambda^{2}+36 \lambda^{2}}{196}=1 \)
\(\Rightarrow 49 \lambda^{2}=196 \Rightarrow \lambda^{2}=\frac{196}{49} \)
\(\lambda^{2}=4 \Rightarrow \lambda=\pm 2 \)
So, the direction cosines l,m and n are \(\frac{2}{7}, \frac{3}{7} \text { and } \frac{-6}{7}\) .
[\(\because \vec{r} \)makes an acute angle with X -axis, so we will take positive value of \(\lambda\)]
\(\because \ \vec{r}=\hat{r} \cdot|\vec{r}|\)
\(\therefore \vec{r}=(l \hat{i}+m \hat{j}+n \hat{k}) \cdot|\vec{r}|=\left(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}\right) \cdot 14\)
\(=4 \hat{i}+6 \hat{j}-12 \hat{k}\)
Thus, the components of \(\vec{r} \text { are } 4 \hat{i}, 6 \hat{j} \text { and }-12 \hat{k}\). -
Clearly, \(\vec{b}+\vec{c}=\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)+\left(c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}\right)\)
\(=\left(b_{1}+c_{1}\right) \hat{i}+\left(b_{2}+c_{2}\right) \hat{j}+\left(b_{3}+c_{3}\right) \hat{k}\)
\(\therefore \vec{a} \times(\vec{b}+\vec{c})=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \end{array}\right|\)
\(=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{array}\right|+\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right|\)
[by property of determinant]
\(=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)
Hence, \(\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})\)
4 Marks