CBSE 12th Standard Physics Subject Nuclei 3 Mark Ncert Exemplar Questions 2021
By QB365 on 24 May, 2021
QB365 Provides the updated NCERT Exemplar Questions for Class 12, and also provide the detail solution for each and every case study questions. NCERT Exemplar questions are latest updated question pattern from NCERT, QB365 will helps to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Physics Subject Nuclei 3 Mark Ncert Exemplar Questions 2021
12th Standard CBSE
-
Reg.No. :
Physics
-
In a nucleus of 92U238 , find the number of protons and the number of neutrons.
(a) -
Obtian the approximate velue of the radius of a nucleus 92U238 , R0 is 1.2 x 10-15 m.
(a) -
The number of \(\alpha \)-particles scattered at an angle of 900 is 100 per minute. What will be the number of \(\alpha \)-particles, when it is scattered at an angle of 600?
(a) -
Two radioactive nuclei A and B, in a given sample disintegrates into a stable nucleus C. At time t = 0, number of A species are 4N0 and that of B are N0. Half-life of A (for conversion to C) is 1 min whereas, that of B is 2 min. Initially, there are no nuclei of C present in the sample. When number of nuclei of A and B are equal, then what would be the number of nuclei of C present in the sample?
(a) -
86R222 is converted into 84Po218. Name the particle emitted in this case and write down the corresponding equation.
(a)
*****************************************
CBSE 12th Standard Physics Subject Nuclei 3 Mark Ncert Exemplar Questions 2021 Answer Keys
-
Number of protons, Z = 92
\(\therefore\) Number of neutrons, N = A-Z = 238 - 92 = 146 -
Given, A = 238, R0 = 1.2 x 10-15 m
As, \(R={ R }_{ 0 }{ A }^{ { 1 }/{ 3 } }=1.2\times { 10 }^{ -15 }\left( { 238 }^{ { 1 }/{ 3 } } \right) \)
\(\therefore \) \(R=7.437\times { 10 }^{ -15 }m\) -
Number of -particles scattered at an angle of is given by
\(N\alpha \frac { 1 }{ sin^{ 4 }\theta /2 } \Rightarrow \frac { { N }_{ 1 } }{ { N }_{ 2 } } =\left( \frac { \frac { \theta _{ 2 } }{ 2 } }{ sin\frac { { \theta }_{ 1 } }{ 2 } } \right) ^{ 4 }\)
\(\Rightarrow \ \frac { 100 }{ { N }_{ 2 } } =\left( \frac { sin\quad { 30 }^{ 0 } }{ sin\quad { 45 }^{ 0 } } \right) \Rightarrow \frac { 100 }{ { N }_{ 2 } } =\frac { 4 }{ 16 } \Rightarrow { N }_{ 2 }=400\) -
Give, at t = 0, number of nuclei of A = 4N0 and number of nuclei of B = N0.
Half-life of A, TA = 1 min, half-life of B, TB = 2 min
After time t, number of nuclei of A,
\({ n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/{ T }_{ A } }\)
\(\Rightarrow \) \({ n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/1 }\)
After time t, number of nuclei of B,
\({ n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/{ T }_{ A } } = { n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }\)
Let the number of nuclei of A and B in given sample be after time t, then nA = nB
or \(4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/1 }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }\) or \({ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }={ \left( \frac { 1 }{ 4 } \right) }={ \left( \frac { 1 }{ 2 } \right) }^{ 2 }\)
or \(\frac { t }{ 2 } =2\quad \Rightarrow \quad t=4min\)
\(\therefore \ \ { n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ 4/1 }=\frac { { N }_{ 0 } }{ 4 } \)
and \({ n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ 4/2 }=\frac { { N }_{ 0 } }{ 4 } \)
\(\therefore \) Population of C in the sample is
\(=\left( 4{ N }_{ 0 }-\frac { { N }_{ 0 } }{ 4 } \right) +\left( \quad { N }_{ 0 }-\frac { { N }_{ 0 } }{ 4 } \right) =\frac { { 9N }_{ 0 } }{ 2 } \) -
Let the particle emitted in this can be represented as zXA.
Therefore, 86R222 \(\rightarrow \) 84Po218 + zXA.
Using the law of conservation of mass number and charge number, we get
222 = 218 + A and 86 = 84 + Z
\(\Rightarrow \) A = 4 \(\Rightarrow \) Z = 2.
Now, A = 4 and Z = 2 correspond to \(\alpha \) - particle \(_{ 2 }^{ 4 }{ He }\) .
Therefore, emitted particle is \(\alpha \)-particle and the equation is 86R222 \(\rightarrow \) 84Po218+ \(_{ 2 }^{ 4 }{ He }\)