CBSE 12th Standard Physics Subject Nuclei HOT Questions 3 Mark Questions With Solution 2021
By QB365 on 27 May, 2021
QB365 Provides the HOT Question Papers for Class 12 Physics, and also provide the detail solution for each and every HOT Questions. HOT Questions will help to get more idea about question pattern in every exams and also will help to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Physics Subject Nuclei HOT Questions 3 Mark Questions With Solution 2021
12th Standard CBSE
-
Reg.No. :
Physics
-
The isotopes of \({ U }^{ 238 }\ and\ { U }^{ 235 }\) occur in nature in the ratio 140 : 1. Assuming that at the time of earth's formation, they were present in equal ratio, make an estimate of the age of the earth. The half lives of \({ U }^{ 238 }\ and\ { U }^{ 235 }\) are \(4.5\times { 10 }^{ 9 }\) years and \(7.13\times { 10 }^{ 8 }\) years respectively.
Given : \(\log _{ 10 }{ 140 } =2.1461,\log _{ 10 }{ 2 } =0.3010\)(a) -
Two radioactive nuclei A and B, in a given sample disintegrates into a stable nucleus C. At time t = 0, number of A species are 4N0 and that of B are N0. Half-life of A (for conversion to C) is 1 min whereas, that of B is 2 min. Initially, there are no nuclei of C present in the sample. When number of nuclei of A and B are equal, then what would be the number of nuclei of C present in the sample?
(a) -
(a) Deduce the expression ,N = \({ N }_{ 0 }{ e }^{ -\lambda t }\), for the law of radioactive decay
(b) (i) Write symbolically the process expressing the \({ \beta }^{ + }\) decay of \(_{ 11 }^{ 22 }{ Na }\) . Also write the basic nuclear process underlying this decay.
(ii) Is the nucleus formed in the decay of the nucleus \(_{ 11 }^{ 22 }{ Na }\), an isotope or an isobar?(a) -
Write symbolically the process expressing the \({ \beta }^{ + }\) decay of \(_{ 11 }^{ 22 }{ Na }\). Also write the basic nuclear process underlying this decay.
(a) -
Is the nucleus formed in the decay of the nucleus \(_{ 11 }^{ 22 }{ Na }\), an isotope or an isobar?
(a)
*****************************************
CBSE 12th Standard Physics Subject Nuclei HOT Questions 3 Mark Questions With Solution 2021 Answer Keys
-
\({ N }_{ 1 }={ N }_{ 0 }{ e }^{ -{ \lambda }_{ 1 }t },\quad { N }_{ 2 }={ N }_{ 0 }{ e }^{ -{ \lambda }_{ 2 }t }\)
\(\\ \frac { { N }_{ 1 } }{ { N }_{ 2 } } ={ e }^{ \left( { \lambda }_{ 2 }-{ \lambda }_{ 1 } \right) t }\quad or\quad t=\frac { \log _{ e }{ \left( { N }_{ 1 }{ /N }_{ 2 } \right) } }{ { \lambda }_{ 2 }-{ \lambda }_{ 1 } } =\frac { \log _{ e }{ 140/1 } }{ \log _{ 2 }{ 2\left[ \frac { 1 }{ { T }_{ 2 } } -\frac { 1 }{ { T }_{ 1 } } \right] } } =\frac { \log _{ e }{ 140 } }{ \log _{ 10 }{ 2 } } \left( \frac { { T }_{ 2 }{ T }_{ 1 } }{ { T }_{ 1 }-{ T }_{ 2 } } \right) \)
On putting the values, we get \(t=6\times { 10 }^{ 9 }\ years\) -
Give, at t = 0, number of nuclei of A = 4N0 and number of nuclei of B = N0.
Half-life of A, TA = 1 min, half-life of B, TB = 2 min
After time t, number of nuclei of A,
\({ n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/{ T }_{ A } }\)
\(\Rightarrow \) \({ n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/1 }\)
After time t, number of nuclei of B,
\({ n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/{ T }_{ A } } = { n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }\)
Let the number of nuclei of A and B in given sample be after time t, then nA = nB
or \(4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/1 }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }\) or \({ \left( \frac { 1 }{ 2 } \right) }^{ t/2 }={ \left( \frac { 1 }{ 4 } \right) }={ \left( \frac { 1 }{ 2 } \right) }^{ 2 }\)
or \(\frac { t }{ 2 } =2\quad \Rightarrow \quad t=4min\)
\(\therefore \ \ { n }_{ A }=4{ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ 4/1 }=\frac { { N }_{ 0 } }{ 4 } \)
and \({ n }_{ B }={ N }_{ 0 }{ \left( \frac { 1 }{ 2 } \right) }^{ 4/2 }=\frac { { N }_{ 0 } }{ 4 } \)
\(\therefore \) Population of C in the sample is
\(=\left( 4{ N }_{ 0 }-\frac { { N }_{ 0 } }{ 4 } \right) +\left( \quad { N }_{ 0 }-\frac { { N }_{ 0 } }{ 4 } \right) =\frac { { 9N }_{ 0 } }{ 2 } \) -
(a) \(\frac { dN }{ dt } =-\lambda N\)
\(\int _{ { N }_{ 0 } }^{ N }{ \frac { dN }{ N } =\int _{ 0 }^{ t }{ -\lambda dt } } \)
\(\left[ { log }_{ e }^{ N } \right] _{ { N }_{ 0 } }^{ N }=-\lambda \left[ t \right] _{ 0 }^{ t }\)
\(loge\frac { N }{ { N }_{ 0 } } =-\lambda t\)
\(N={ N }_{ 0 }{ e }^{ -\lambda t }\)
(b) (i) \(_{ 11 }^{ 22 }{ Na }\rightarrow _{ 10 }^{ 22 }Ne+{ e }^{ x }+\upsilon \)
Also accept,if a student does not identify the product nucleus and writes as
\(_{ 11 }^{ 22 }{ Na }\rightarrow _{ 10 }^{ 22 }Xe+{ e }^{ x }+\upsilon \)
Basic process
\(p\rightarrow n+{ e }^{ + }+\upsilon \)
(ii) Isobar -
\(_{ 11 }^{ 22 }{ Na }\rightarrow _{ 10 }^{ 22 }Ne+{ e }^{ x }+\upsilon \)
Also accept, if a student does not identify the product nucleus and writes as
\(_{ 11 }^{ 22 }{ Na }\rightarrow _{ 10 }^{ 22 }Xe+{ e }^{ x }+\upsilon \)
Basic process
\(p\rightarrow n+{ e }^{ + }+\upsilon \) -
Isobar