1. LAWS OF MOTION

Learning Objectives

At the end of this lesson students will be able to:

- Understand the concepts of force and motion.
- Explain inertia and its types.
- State the three laws of Newton.
- Apply Newtonian concept of force and motion.
- Define force, momentum and impulse.
- Distinguish between mass and weight
- Analyze weightlessness and the principle of conservation of momentum.
- Explain the law of gravitation and its applications.
- Understand the variations in 'g' due to height and depth.
- Solve numerical problems related to force and motion

Important Key Points and Results

i. Action of Forces

Action of forces	Diagram	Resultant force (F _{net})
Parallel forces are acting in the same direction	F_1 F_2	$F_{net} = F_1 + F_2$
Parallel unequal forces are acting in opposite directions	F_1 F_2	$F_{net} = F_1 - F_2 \text{ (if } F_1 > F_2)$ $F_{net} = F_2 - F_1 \text{ (if } F_2 > F_1)$ $F_{net} \text{ is directed along}$ the greater force.
Parallel equal forces are acting in opposite directions in the same line of action $(F_1 = F_2)$	F_1	$F_{\text{net}} = F_1 - F_2 (F_1 = F_2)$ $F_{\text{net}} = 0$

ii. Apparent weight of a person in a moving lift

Case 1: Lift is moving upward with an acceleration 'a'	Case 2: Lift is moving downward with an acceleration 'a'	Case 3: Lift is at rest .	Case 4: Lift is falling down freely
$R - W = F_{net} = ma$ $R = W + ma$ $R = mg + ma$ $R = m(g+a)$	$W - R = F_{net} = ma$ $R = W - ma$ $R = mg - ma$ $R = m(g-a)$	Here, the acceleration is zero $a = 0$ $R = W$ $R = mg$	Here, the acceleration is equal to g $a = g$ $R = m(g - g)$
R > W	R < W	R = W	R = 0
Apparent weight is greater than the actual weight.	Apparent weight is lesser than the actual weight.	Apparent weight is equal to the actual weight.	Apparent weight is equal to zero .