[Maximum Marks:90

HIGHER SECONDARY SECOND YEAR MATHEMATICS MODEL QUESTION PAPER 2019 - 20

Time Allowed: 15 Minutes + 2.30 Hours]

Instru	ections:	(a)	Check the quest	tion paper for fairn	ness of printing. If there is all Supervisor immediately.	
		(b)	Use Blue or Bla	ek ink to write an	d underline and pencil to	
		(0)	draw diagrams.		35	
				PART-1		
Note:	(i)	All q	uestions are com	pulsory.	$20 \times 1 = 20$	
	(ii)			able answer from ode with the corre	the given four correct alternative sponding answer.	
L	If $A = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix}$. B=	adj A and $C = 3A$, d	hen $\frac{ adjB }{ C } =$		
	(a) $\frac{1}{3}$		(b) 1/9	(c) $\frac{1}{4}$	(d) l	
2.	If the inverse	e of the	matrix $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ is $\frac{1}{1}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the asc	sending order of u, h, c, d is	
	(a) a,b,c,d		(b) d, b, c, a	(c) c.a.b,d	(d) b, a, c, d	
3.	The least va	luc of a	satisfying $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)$] = 1 is		
	(a) 30		(b) 24	(c) 12	(d) 18	
4.	The principa	al argum	ent of $\frac{3}{-1+i}$ is			
	(a) $\frac{-5\pi}{6}$		(b) $\frac{-2\pi}{3}$	(c) $\frac{-3\pi}{4}$	(d) $\frac{-\pi}{2}$	
5.	The polynor	mial equ	sation $x^3 + 2x + 3 = 6$) has		
	(a) one nega	ative and	two real roots	(b) one positive	and two imaginary roots	
	(c) three real roots			(d) no solution		
6.	The domain	of the f		$f(x) = \sin^{-1}\left(\sqrt{x-1}\right)$		
	(a) [1,2]				(d) [-1,0]	
7.		isano		$(y^2 \approx 12x)$, then the y	value of k is	
342	(a) 3	4.7	(b) -1	(c) l	(d) 9	
B.		assing t			(3,0), again passing through the point	
	(a) $(-5,2)$			(c) (5,-2)		
9.	The volume	of the p	araliclepiped with i		by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$	
	(a) $\frac{\pi}{2}$		(b) $\frac{\pi}{3}$	(c) z	(d) $\frac{\pi}{4}$	
10.	If the line 2	$\frac{x-2}{2} = \frac{1}{2}$	$\frac{y-1}{z} = \frac{z+2}{2}$ lies in	the plane $x + 3y - \alpha$	$z + \beta = 0$, then (α, β) is	

	(a) $(-5,5)$	(b) $(-6,7)$	(c) (5, -5)	(d) $(6,-7)$	
11.	The function sin ⁴	x + cos ⁴ x is increasi	ng in the interval		
	(a) $\left[\frac{5\pi}{8}, \frac{3\pi}{4}\right]$	$(b) \left[\frac{\pi}{2}, \frac{5\pi}{8} \right]$	(c) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$	(d) $\left[0, \frac{\pi}{4}\right]$	
12.	The curve $y = ax$	$a^4 + bx^2$ with $ab \ge 0$			
	(a) has no horizon		(b) is concave u		
	(c) is concave dov	2000 0000	(d) has no point	s of inflection	
13.	If $u = (x - y)^2$, the	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \text{ is }$			
	(a) t		(c) 0 (d) 2	
14,	The value of $\int_{0}^{1} \frac{1}{1}$	dx +5 ^{∞1z} is			
	(a) $\frac{\pi}{2}$	(b) π	(c) $\frac{3\pi}{2}$	(d) 2π	
15.	The volume of sol	id of revolution of th	e region bounded by	$y^2 = x(a - x)$ about x-axis is	
	(a) πα ³	(b) $\frac{\pi a^3}{4}$	(c) $\frac{\pi a^2}{5}$	(d) $\frac{\pi a^2}{6}$	
16.	If m,n are the orde	r and degree of the d	ifferential equation	$\frac{d^4y}{dx^4} + \frac{d^2y}{dx^2}\Big ^{\frac{1}{2}} = a\frac{d^3y}{dx^4} \text{ respective}$	vely, then
	A	and the	•	• • • • • • • • • • • • • • • • • • • •	

(a) 15 (b) 12 (c) 14

17. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi \begin{pmatrix} y \\ x \end{pmatrix}}{\phi \begin{pmatrix} y \\ x \end{pmatrix}}$ is

(a) $x\phi\left(\frac{y}{x}\right) = k$ (b) $\phi\left(\frac{y}{x}\right) = kx$ (c) $y\phi\left(\frac{y}{x}\right) = k$ (d) $\phi\left(\frac{y}{x}\right) = ky$

18. A random variable X has the following distribution.

Z.	1	2	3	4
(Y-A		20	2.	40

Then the value of c is

(a)
$$0.1$$

(d) 0.4

(d) 13

19. If $P\{X=0\}=1-P\{X=1\}$ and $E[X]=3Var\{X\}$, then $P\{X=0\}$ is

(a)
$$\frac{2}{3}$$

(b)
$$\frac{2}{5}$$

(c)
$$\frac{1}{2}$$

(d) $\frac{i}{5}$

20. Which one is the contrapositive of the statement $\{p \lor q\} \to r$

(a)
$$\neg r \rightarrow (\neg p \land \neg q)$$

(b)
$$\neg r \rightarrow (p \lor q)$$

(c)
$$r \to (p \land q)$$

(d)
$$p \rightarrow (q \vee r)$$

PART - II

Note:

Answer any SEVEN questions.

 $7 \times 2 = 14$

- (ii) Question number 30 is compulsory.
- 21. Solve the following system of linear equations by Cramer's rule: 2x y = 3, x + 2y = -1,
- 22. If z_1 , z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |z_1 + z_2 + z_3| = 1$, find the value of $\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \frac{1}{z_3} \right|$.
- 23. Find the value of $\sin\left(\frac{\pi}{3} + \cos^{-1}\left(-\frac{1}{2}\right)\right)$.
- 24. Find the equation of the parabola with vertex (-1,-2),axis parallel to y-axis and passing through (3,6).
- 25. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$, find the angle between \hat{a} and \hat{c} .
- 26. If the mass m(x) (in kilogram) of a thin rod of length x (in meters) is given by, $m(x) = \sqrt{3x}$ then what is the rate of change of mass with respect to the length when it is x = 27 meters?
- 27. Evaluate: $\int_{0}^{\infty} e^{-w} x' dx, \text{ where } a > 0.$
- 28. Show that $y = ax + \frac{b}{x}$, $x \ne 0$ is a solution of the differential equation $x^2y'' + xy' y = 0$.
- 29. Find the mean of a random variable X, whose probability density function is $f'(x) = \begin{cases} \lambda e^{-ix} & \text{for } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$
- 30. Let * be a binary operation on set Q of rational numbers defined as $a*b = \frac{ab}{8}$. Write the identity for *, if any.

PART-III

Note:

(i) Answer any SEVEN questions.

 $7 \times 3 = 21$

- (ii) Question number 40 is compulsory.
- 31. Find the inverse of $\begin{bmatrix} 2 & -1 \\ 5 & -2 \end{bmatrix}$ by Gauss Jordan method.
- 32. If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(\pi 1)' + 8 = 0$ are $-1, 1-2\omega, 1-2\omega^2$.

- 33. Find all real numbers satisfying $4^4 3(2^{4/3}) + 2^5 = 0$.
- 34. Find the centre, foci, and eccentricity of the hyperbola $12x^2 4y^2 24x + 32y 127 = 0$.
- 35. Find the image of the point whose position vector is $\hat{i} + 2\hat{j} + 3\hat{k}$ in the plane $\hat{r} \cdot (\hat{i} + 2\hat{j} + 4\hat{k}) = 38$.
- 36. Evaluate: $\lim_{x\to 0^+} x \log x$.
- 37. Find a linear approximation for the function given below at the indicated points. $f(x) = x^3 5x + 12$, $x_0 = 2$.
- 38. By using the properties of definite integrals, evaluate $\int_{-1}^{3} |x-1| dx$
- 39. Solve: $\frac{dy}{dx} + 2y \cot x = 3x^2 \cos ec^2 x$.
- 40. A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, find the probability of getting exactly two heads.

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. (a) By using Gaussian elimination method, balance the chemical reaction equation: $C_2H_4 + O_5 \rightarrow H_5O + CO_5$,

OR

(b) If
$$z = x + iy$$
 and $\arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x - 3y + 2 = 0$

42. (a) Solve the equation: $3x^4 - 16x^3 + 26x^2 - 16x + 3 = 0$.

OR

(b) Solve:
$$\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$
.

43. (a) A rod of length 1.2m moves with its ends always touching the coordinate axes. The locus of a point P on the rod, which is 0.3m from the end in contact with x -axis is an ellipse. Find the eccentricity.

(OR)

(b) Find the non-parametric and Cartesian equations of the plane passing through the point (4, 2, 4), and is perpendicular to the planes 2x + 5y + 4z + 6 = 0 and 4x + 7y + 6z + 2 = 0.

44. (a) A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day of a high-grade steel, where $y = \frac{40-5x}{10-x}$. If the fixed market price of low-grade steel is half that of high-grade steel, then what should be optimal productions in low-grade steel and high-grade steel in order to have maximum receipts.

(OR)

(b) Let
$$z(x,y) = xe^y + ye^{-t}, x = e^{-t}, y = st^2, s, t \in \mathbb{R}$$
. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

45. (a) Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|.

(OR)

- (h) Water at temperature 100°C cools in 10 minutes to 80°C in a room temperature of 25°C. Find
 - (i) The lemperature of water after 20 minutes
 - (ii) The time when the temperature is 40°C $\left[\log_{r} \frac{11}{15} = -0.3101; \log_{r} 5 = 1.6094\right]$
- 46. (a) Suppose a discrete random variable can take only the values 0. 1, and 2. The probability mass function is defined by

$$f(x) = \begin{cases} \frac{x^2 + 1}{k}, & \text{for } x = 0, 1, 2\\ 0, & \text{otherwise} \end{cases}$$

Find (i) the value of k (ii) cumulative distribution function (iii) $P(x \ge 1)$

(OR)

- Using truth table check whether the structurents $\neg (p \lor q) \lor (\neg p \land q)$ and $\neg p$ are logically equivalent.
- 47. (a) Prove by vector method that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

(OR)

(b) Find the equations of tangent and normal to the curve $y^2 - 4x = 2y + 5 = 0$ at the point where it cuts the x-axis.