https://www.qb365.in/materials/ 73 #### 11th chapter 4 - 1 mark | | | | 11th Standard | I | | | | | |-----|--|--|---|---------------------------------|----------------------|---------------------------------|---------|-------| | | | Maths | | | | | | | | | | | | | Reg.No.: | | | | | Exa | am Time : 01:13:00 Hrs | | | | | Total | Mark | s:7 | | | | | | | | | 73 x 1 | 1 = 7 | | 1) | The sum of the digits | at the 10 th place of all n | umbers formed w | ith the help of 2, | 4, 5, 7 taken all at | a time i | s | | | | (a) 432 | (b) 108 | (| (c) 36 | (d) 18 | | | | | 2) | | re are three multiple cho | - | l each question h | nas 5 choices. Nur | nber of | ways | in | | | | ail to get all answer corr | | . | 4.00 | | | | | | (a) 125 | (b) 124 | | (c) 64 | (d) 63 | | | | | | The number of ways in which the following prize be given to a class of 30 boys first and second in mathematics, | | | | | | | | | | | ysics, first in chemistry | _ | | () | 5 | | | | | (a) $30^4 \times 29^2$ | (b) $30^3 \times 29^3$ | () | $30^2 \times 29^4$ | (d) 30 × | 29 ³ | | | | | | numbers all digits of wh | | | (1) | | | | | | (a) 25 | (b) 5 ⁵ | (c) 5^6 | | (d) 625 | | | | | 5) | = | er of ways four rings ca | - | | 4.00 | | | | | | (a) 4^3-1 | (b) 3 ⁴ | ` , | 68 | (d) 64 | | | | | 6) | If $^{(n+5)}P_{(n+1)} = \frac{11(n-1)}{2}$. | ⁽ⁿ⁺³⁾ P _n , then the value o | f n are | | | | | | | | (a) 7 and 11 | (b) 6 and 7 | (c) 2 | and 11 | (d) 2 and | 6 | | | | 7) | The product of r conse | ecutive positive integers | is divisible by | | | | | | | | (a) r! | (b) (r-1)! | (c) (r+ | 1)! | (d) | r ^r | | | | 8) | The number of five dig | git telephone numbers h | aving at least one | of their digits re | peated is | | | | | | (a) 90000 | (b) 10000 | (c) 3 | 0240 | (d) 69760 | | | | | 9) | If a^2 -a C_2 = a^2 -a C_4 then | the value of 'a' is | | | | | | | | | (a) 2 | (b) 3 | (c) 4 | | (d) 5 | | | | | 10) | There are 10 points in | a plane and 4 of them a | are collinear. The r | number of straigl | ht lines joining any | / two pc | ints i | S | | | (a) 45 | (b) 40 | (c) 3 | 9 | (d) 38 | | | | | 11) | The number of ways in which a host lady invite 8 people for a party of 8 out of 12 people of whom two do not want | | | | | | want | | | | to attend the party tog | | | | | | | | | | (a) $2 \times {}^{11}C_7 + {}^{10}C_8$ | (b) ¹¹ C | ₇ + ¹⁰ C ₈ | (c) ${}^{12}C_{8}-{}^{10}C_{6}$ | (d) ¹ | ⁰ C ₆ +2! | | | | 12) | The number of paralle | elograms that can be for | med from a set of | f four parallel line | es intersecting and | other se | t of th | ıree | | | parallel lines. | | | | | | | | | | (a) 6 | (b) 9 | (c) 12 | | (d) 18 | | | | | 13) | Everybody in a room s | shakes hands with every | body else. The to | tal number of sha | ake hands is 66. T | he num | ber of | f | | | persons in the room is | 3 | | | | | | | | | (a) 11 | (b) 12 | (c) | 10 | (d) 6 | | | | | 14) | Number of sides of a polygon having 44 diagonals is | | | | | | | | | | (a) 4 | (b) 4! | (c) 11 | | (d) 22 | | | | | 15) | If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, then the total | | | | | | 1 | | | | number of points of in | tersection are | | | | | | | | | (a) 45 | (b) 40 | (c) 10! | | (d) 210 | | | | | 16) | In a plane there are 10 | points are there out of | which 4 points ar | e collinear, then t | the number of tria | ngles fo | rmed | is | | | (a) 110 | (b) 10_{C_2} | (a) 1 | 120 | (d) 116 | | | | (a) 5 (b) 6 (c) 11 18) $^{(n-1)}C_r + ^{(n-1)}C_{(r-1)}$ is (a) (n+1)C_r (b) $(n-1)C_r$ (c) nC_r 17) In ${}^{2n}C_3$: ${}^{n}C_3$ = 11: 1 then n is (d) nC_{r-1} (d) 7 ## https://www.qb365.in/materials/ | • | | | 1 // | 1 / | |-----|--|---|--|--| | 19) | The number of ways of choosing (a) $^{52}\text{C}_5$ (b) $^{48}\text{C}_5$ | 5 cards out of a deck
(c) 52 C ₅ + 48 C | | de at least one king is
(d) ⁵² C ₅ - ⁴⁸ C ₅ | | 20) | The number of rectangles that a | chessboard has | | | | | (a) 81 (b) 99 | (c) 12 | 96 | (d) 6561 | | 21) | The number of 10 digit number t (a) ${}^{10}\text{C}_2 + {}^9\text{C}_2$ | hat can be written by u
(b) 2 ¹⁰ | sing the digits 2 and 3 i
(c) 2 ¹⁰ -2 | s
(d) 10! | | 22) | If P_r stands for P_r then the sum | of the series $1 + P_1 + 2$ | $P_2 + 3P_3 + + nPn$ is | | | | (a) P_{n+1} (b) P_{n+1} -1 | | P _{n-1} +1 | (d) $^{(n+1)}P_{(n-1)}$ | | 23) | The product of first n odd natura | l numbers equals | | • • | | | (a) ${}^{2n}C_n \times {}^{n}P_n$ (b) $\left(\frac{1}{2}\right)^{n}$ | | (c) $\left(\frac{1}{4}\right)^n \times {}^{2n} {}_{n} \times {}^{2n} {}_{n}$ | (d) ${}^{n}C_{n} \times {}^{n}P_{n}$ | | 24) | If ⁿ C ₄ , ⁿ C ₅ , ⁿ C ₆ are in AP the value | of n can be | , , | | | ۷٠, | | b) 11 | (c) 9 | (d) 5 | | 25) | 1+3+5+7+ +17 is equal to | 5) 11 | (0) 3 | (a) 0 | | 23) | | (b) 81 | (c) 71 | (d) 61 | | 26) | | ` ' | • • | • • | | 20) | · · · · · · · · · · · · · · · · · · · | = | | ticular things are to be included is | | 07\ | , , |) n-3 P _r | (c) nP _{r-3} | (d) r! n-3C _{r-3} | | 2/) | | = | | ours taking one or more at a time is | | | (a) 1958 | (b) 1956 | (c) 16 | (d) 64 | | 28) | The number of ways to average to | | | | | | ` ' | o) 240 | (c) 720 | (d) 6 | | 29) | Number of all four digit numbers | | | | | | (a) 24 (b) 30 | | 125 | (d) 100 | | 30) | The product of r consecutive pos | sitive integers is divisib | | | | | (a) r! (b) r!+1 | (c) (r+1) | (d) none of the | ese | | 31) | If $15C_{3r}=15 C_{r+3}$, then r is equal t | to | | | | | (a) 5 (b) | 4 | (c) 3 | (d) 2 | | 32) | If $mC_1 = nC_2$, then | | | | | | (a) $2m = n$ (b) $2m = n$ | (n+1) (n | c) 2m = n(n-1) | (d) 2n=m(m-1) | | 33) | $5c_1 + 5c_2 + 5c_3 + 5c_4 + 5c_5$ is equal to |) | | | | | (a) 30 (b) | 31 | (c) 32 | (d) 33 | | 34) | Among the players 5 are bowlers | s. In how many ways a | team of 11 may be form | ned with atleast 4 bowlers? | | | (a) 265 (b) | 263 | (c) 264 | (d) 275 | | 35) | If $n+1 C_3=2.nC_{21}$ then $n =$ | | | | | | (a) 3 (b) | 4 | (c) 5 | (d) 6 | | 36) | If $(a^2-a)C_2=(a^2-a)C_4$, then a = | | | | | | (a) 2 (b) 3 | (c) 4 | (d) none of these | | | 37) | There are 10 points in a plane an | d 4 of them are colline | ar. The number of straig | ght lines joining any two of them is | | | (a) 45 (b) | 40 | (c) 39 | (d) 38 | | 38) | For all $n \in N$, $3 \times 5^{2n+1} + 2^{3n+1}$ is | divisible by | | | | | (a) 19 (b) | 17 | (c) 23 | (d) 25 | | 39) | If $10^n + 3 \times 4^{n+2} + \lambda$ is divisible by | y 9 for all n ∈ N, then t | the least positive integra | al value of λ is | | | (a) 5 (b) | 3 | (c) 7 | (d) 1 | | 40) | If $p(n)$:49 ⁿ + 16 ⁿ + λ is divisible b | y 64 for n ∈ N is true, | then the least negative | integral value of λ is | | | (a) -3 (b) | | (c) -1 | (d) -4 | | 41) | n+ n+1 is: | | To the second | | | | (a) $Ln(n+2)$ (b) | n+2 (c) | 2n+1 | (d) none of these | | \ | If ${}^{100}C_r = {}^{100}C_{3r}$ then r is: | | | | 21) (b) 2¹⁰ ## https://www.qb365.in/materials/ | | | n a plane of which exac | tly 8 are collinear. The number | of straight lines obtained by joining | | |--------|--|---|------------------------------------|---------------------------------------|--------| | | nese points is | (L) 00 | (·) 77 | (4) 70 | | | , | a) 105 | (b) 28 | (c) 77 | (d) 78 | | | | | ngles than can be form | | (1) 004 | | | • | a) ⁹ C ₂ | (b) ⁹ C ₂ X ⁹ C ₂ | (c) 204 | (d) 224 | | | - | | | letters in 10 letter boxes is | 4.0 | | | • | a) 50 | (b) 5^{10} | (c) 10^5 | (d) 1 | | | 67) H | | | of letters of words "ENGINEERII | | | | (a | a) 11! | (b) $\frac{11!}{(3!)^2(2!)^2}$ | (c) $\frac{11!}{3!2!}$ | (d) $\frac{11!}{3!}$ | | | 68) T | he number of 4 digi | t numbers, that can be | formed by the digits 3, 4, 5, 6, 7 | , 8, 0 and no digit is being repeated | is | | (a | a) 720 | (b) 840 | (c) 280 | (d) 560 | | | 69) T | he number of diago | nals that can be drawn | by joining the vertices of an oc | tagon is | | | (a | a) 28 | (b) 48 | (c) 20 | (d) 24 | | | 70) If | ^{f n} P _t = 720 nCr, then | the value of r = | | | | | - | a) 6 | (b) 5 | (c) 4 | (d) 7 | | | | | ent 4 letters words with | or without meaning that can b | e formed from the letters of the wo | rd | | | SURYA" is | | | | | | • | a) 120 | (b) 360 | (c) 230 | (d) 5 | | | - | | _ | | ow the keyword. The total number o | f | | | - | e to know the keyword | | | | | • | a) 3 ⁵ | (b) 5 ³ | (c) 124 | (d) 5 | | | | $f^{n}C_{10} = {}^{n}C_{6}$, then ${}^{n}C_{2}$ | | | | | | (a | n) 16 | (b) 4 | (c) 120 | (d) 240 | | | | | +++++++++++ | ****** | +++++ | | | | | ^^^^^ | | ^^^^ | | | 1\ | (b) 100 | | | 73 x | 1 = 73 | | | (b) 108 | | | | | | 2) | (b) 124 | | | | | | 3) | (a) $30^4 \times 29^2$ | | | | | | 4) | | | | | | | 5) | | | | | | | 6) | | | | | | | 7) | | | | | | | | (a) 90000 | | | | | | | (b) 3 | | | | | | |) (b) 40 | | | | | | |) (c) ${}^{12}C_{8}$ - ${}^{10}C_{6}$ | | | | | | |) (d) 18 | | | | | | |) (b) 12 | | | | | | 14 |) (c) 11 | | | | | | 15 |) (a) 45 | | | | | | 16 |) (d) 116 | | | | | | 17 |) (b) 6 | | | | | | 18 |) (c) nC _r | | | | | | 19 |) (d) $^{52}C_5 - ^{48}C_5$ | | | | | | 20 |) (c) 1296 | | | | | 22) (b) P_{n+1}-1 23) (b) $$\left(\frac{1}{2}\right)^{n} {}_{n}^{C} {}_{n}^{P}$$ 24) (a) 14 25) (b) 81 26) (d) r! n-3C_{r-3} 27) (b) 1956 28) (a) 120 29) (a) 24 30) (a) r! 31) (c) 3 32) (c) 2m = n(n-1) 33) (b) 31 34) (c) 264 35) (c) 5 36) (b) 3 37) (b) 40 38) (b) 17 39) (a) 5 40) (c) -1 41) (a) Ln(n + 2) 42) (b) 25 43) (c) 35 44) (c) 3 45) (d) 60 46) (a) 30 47) (b) n 48) (d) 144 49) (c) 3 50) (d) 185 51) (d) 11 52) (b) 14 53) (b) ¹⁰C₅ X ⁸C₄ 54) (b) 1023 55) (c) ⁽ⁿ⁺²⁾C_r 56) (d) 15 57) (c) 780 58) (b) 192 59) (b) 2454 60) (d) 204 00) (0) 20. 61) (a) 14 62) (c) 1024 63) (d) 27 64) (d) 78 65) (b) ${}^{9}C_{2} X {}^{9}C_{2}$ 66) (c) 10⁵ 67) (b) $\frac{11!}{(3!)^2(2!)^2}$ #### QB365 68) (a) 720 69) (c) 20 70) (a) 6 71) (a) 120 72) (b) 5³ 73) (c) 120 https://www.qb365.in/materials/