Unit 1 to 3 Three Marks Questions with Answer

12th Standard

Business Maths

1) Find the rank of the matrix
$$\begin{pmatrix} -5 & -7 \\ 5 & 7 \end{pmatrix}$$

Let A = $\begin{pmatrix} -5 & -7 \\ 5 & 7 \end{pmatrix}$

Order of A is $2 \times 2 : \rho(A) \leq 2$

Consider the second order minor
$$\begin{vmatrix} -5 & -7 \\ 5 & 7 \end{vmatrix} = 0$$

Since the second order minor vanishes, $ho(A) \neq 2$

Consider a first order minor $|-5| \neq 0$

There is a minor of order 1, which is not zero $\therefore \rho(A) = 1$

2) Find the rank of the matrix A =
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 2 \\ 2 & 3 & 4 & 0 \end{pmatrix}$$

The order of A is 3×4 .

$$\therefore \rho(A) \leq 3.$$

Let us transform the matrix A to an echelon form

Matrix A	Elementary Transformation
$A = egin{pmatrix} 1 & 1 & 1 & 1 \ 3 & 4 & 5 & 2 \ 2 & 3 & 4 & 0 \end{pmatrix}$	$D \rightarrow D \rightarrow D$
$\sim egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 2 - 1 \ 0 & 1 & 2 - 2 \end{pmatrix}$	$R_2 ightarrow R_2-3R_1 \ R_3 ightarrow R_3-2R_1 \ R_3 ightarrow R_3-R_2$
$\sim egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & -1 & -2 & 1 \ 0 & 0 & 0 & -1 \ \end{pmatrix}$	

The number of non zero rows is 3.

$$\rho(A) = 3.$$

3) Show that the equations 2x+y=5,4x+2y=10 are consistent and solve them. The matrix equation corresponding to the system is

$$\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

Matrix A Augmented matrix		Elementary Transformation	
$egin{pmatrix} 2 & 1 \ 4 & 2 \end{pmatrix} \ \sim egin{pmatrix} 2 & 1 \ 4 & 2 \end{pmatrix} \ ho(A) = 1 \ \end{pmatrix}$	$egin{pmatrix} 2 & 1 & 5 \ 4 & 2 & 10 \end{pmatrix} \ \sim egin{pmatrix} 2 & 1 & 5 \ 4 & 2 & 10 \end{pmatrix} \ ho([A,B]) = 1 \end{pmatrix}$	$R_2 o R_2 - 2R_1$	

ho(A) =
ho([A,B]) = 1 <number of unknowns

. The given system is consistent and has infinitely many solutions.

Now, the given system is transformed into the matrix equation.

$$\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$$\Rightarrow 2x + y = 5$$
Let us take y=k,k∈R
$$\Rightarrow 2x + k = 5$$

$$egin{aligned} \Rightarrow 2x+\kappa &= 5 \ x &= rac{1}{2}(5-k) \ x &= rac{1}{2}(5-k), y = k \quad for \quad all \quad k \in R \end{aligned}$$

Thus by giving different values for k, we get different solution. Hence the system has infinite number of solutions.

4) Show that the equations 3x-2y=6, 6x-4y=10 are inconsistent

The matrix equation corresponding to the given system is

$$egin{pmatrix} 3 & -2 \ 6 & -4 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix} = egin{pmatrix} 6 \ 10 \end{pmatrix}$$

AX=B

Matrix A	Augmented matrix	Elementary
Matrix A	[A,B]	Transformation
$egin{pmatrix} 3 & -2 \ 6 & -4 \end{pmatrix} \ \sim egin{pmatrix} 3 & -2 \ 0 & 0 \end{pmatrix} \ ho(A) = 1 \ \end{pmatrix}$	$egin{pmatrix} \left(egin{array}{ccc} 3 & -2 & 6 \ 6 & -4 & 10 \end{array} ight) \ \sim \left(egin{array}{ccc} 3 & -2 & 6 \ 0 & 0 & -2 \end{array} ight) \ ho([A,B]) = 2 \end{array}$	$R_2 ightarrow R_2 - 2R_1$

- ... The given system is inconsistent and has no solution.
- 5) Consider the matrix of transition probabilities of a product available in the market in two brands A and B.

$$_{B}^{A} \left(egin{matrix} A & B \\ 0.9 & 0.1 \\ 0.3 & 0.7 \end{matrix}
ight)$$

Determine the market share of each brand in equilibrium position.

Transition probability matrix

$$T = {}^{A}_{B} \begin{pmatrix} {}^{A} & {}^{B} \\ 0.9 & 0.1 \\ 0.3 & 0.7 \end{pmatrix}$$

At equilibrium, (A B) T=(AB) where A+B=1

(A B)
$$\begin{pmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{pmatrix}$$
 =(A B)

$$0.9A + 0.3B = A$$

$$0.9A+0.3(1-A) = A$$

$$0.9A - 0.3A + 0.3 = A$$

$$0.6A + 0.3 = A$$

$$0.4A = 0.3$$

$$A = \frac{0.3}{0.4} = \frac{3}{4}$$

$$3=1-\frac{3}{4}=\frac{1}{4}$$

Hence the market share of brand A is 75% and the market share of brand B is 25%

- 6) Akash bats according to the following traits. If he makes a hit (S), there is a 25% chance that he will make a hit his next time at bat. If he fails to hit (F), there is a 35%
 - chance that he will make a hit his next time at bat. Find the transition probability matrix

for the data and determine Akash's long-range batting average.

The Transition probability matrix is
$$T = \begin{pmatrix} 0.25 & 0.75 \\ 0.35 & 0.65 \end{pmatrix}$$

At equilibrium, (S F)
$$\begin{pmatrix} 0.25 & 0.75 \\ 0.35 & 0.65 \end{pmatrix}$$
 =(S F) where S + F = 1

$$0.25 S + 0.35 F = S$$

$$0.25 S + 0.35 (1 - S) = S$$

On solving this, we get $S = \frac{0.35}{1.10}$

- ... Akash's batting average is 31.8%
- 7) Show that the equations x- 3y + 4z = 3, 2x 5y + 7z = 6, 3x 8y + 11z = 1 are inconsistent

Given non-homogeneous equations are

$$x-3y+4z=3$$
, $2x-5y+7z=6$, $3x-8y+11z=1$

Augmented matrix [A, B]	Elementary Transformation
$ \begin{pmatrix} 1 & -3 & 4 & 3 \\ 2 & -5 & 7 & 6 \\ 3 & -8 & 11 & 1 \end{pmatrix} $	
$\sim egin{pmatrix} 1 & -3 & 4 & 3 \ 0 & 1 & -1 & 0 \ 0 & 1 & -1 -8 \end{pmatrix}$	$R_2 ightarrow R_2 - 2R_1 \ R_3 ightarrow R_3 - 3R_1$

Augmented matrix			mat	Elementary	
[Α,	B]				Transformation
	$\sqrt{1}$	-3	4	3 \	
\sim	0	1	-1	0	$R_3 ightarrow R_3 - R_2$
	$\int 0$	0	-0	$-8 \int$	

Clearly $\rho(A)=2$ and $\rho(A,B)=3$

$$\rho(A,B) \neq \rho(A)$$

Hence, the given system is inconsistent and has no solution.

find x,y and z

8) If
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
$$\Rightarrow \begin{pmatrix} x0 + 0 \\ 0 + 0 + z \\ 0 + y + 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
$$\Rightarrow x = 2 \quad z = -1 \quad y = 3$$

∴ Solution set is {2,3, -I}

9) If
$$A = \begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix}$$
, $X = \begin{pmatrix} n \\ 1 \end{pmatrix}$ $B = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$ and AX = B then find n.

GivenAX B

$$\begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} n \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2n+4 \\ 4n+3 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$

Equating the corresponding entries on both sides, we get

$$2n + 4 = 8$$

$$2n = 8-4$$

$$n=rac{4}{2}$$

10) Evaluate
$$\int \frac{ax^2+bx+v}{\sqrt{x}} dx$$

$$\int \frac{ax^2+bx+v}{\sqrt{x}} dx = \int \left(ax^{\frac{2}{3}} + bx^{\frac{2}{3}} + cx^{-\frac{1}{2}}\right) dx$$

$$= a \int x^{\frac{3}{2}} dx + b \int x^{\frac{1}{2}} + c \int x^{-\frac{1}{2}} dx$$

$$= \frac{2ax^{\frac{5}{2}}}{5} + \frac{2bx^{\frac{3}{2}}}{3} + 2cx^{\frac{1}{2}} + k$$

QB365

https://www.qb365.in/materials/

11) Evaluate $\int \sqrt{2x+1}dx$

$$\int\sqrt{2x+1}dx=\int\left(2x+1
ight)^{rac{1}{2}}dx \ rac{\left(2x+1
ight)^{rac{3}{2}}}{3}+c$$

12) Evaluate $\int \left(x^3+7\right)\left(x-4\right)dx$

$$\int_{5}^{6} \left(x^{3}+7\right) (x-4) dx = \int_{5}^{6} \left(x^{4}-4x^{3}+7x-28\right) dx$$

$$\frac{x^{5}}{5}-x^{4} \frac{7x^{2}}{2}-25x+c$$

13) Evaluate $\int \frac{2x^2-14x+24}{x-3} dx$

$$\int rac{2x^2-14x+24}{x-3} dx = \int rac{(x-3)(2x-8)}{x-3} dx \ \int (2x-8) dx \ x^2 - 8x + c$$

14) Evaluate $\int (log x)^2 dx$

$$\int (\log x)^2 dx = \int u dv$$

$$= uv - \int v du$$

$$= x (\log x)^2 - 2 \int \log x dx...(*)$$

$$=x(logx)^2-2\int udv$$

$$=x(logx)^2-2[uv-\int udv]$$

$$=x(logx)^2-2[xlogx-\int dx]$$

$$=x(logx)^2-2xlogx+x+c$$

$$=x[\left(log
ight)^{2}-logx^{2}+2]+c$$

For ∫ log x dx in (*)

Take
$$u = (log x)$$
 Differentiate and $dv = dx$ Integrate

$$du = \frac{1}{x}dx$$

$$v = x$$

15) Evaluate $\int (x^2 - 2x + 5)e^{-x}dx$

$$\int (x^2 - 2x + 5)e^{-x} dx = \int u dv$$

$$= uv - u'v1 + u''v2 - u'''v3 + ...$$

$$= (v^2 - 2v + 5)(-e^{-x}) - (2v - 2)e^{-x} + 2(-e^{-x})$$

$$= (x^2 - 2x + 5)(-e^{-x}) - (2x - 2)e^{-x} + 2(-e^{-x}) + c$$

$$= e^{-x} (-x^2 - 5) + c$$

Successive derivatives Repeated integrals

Take
$$u = x2 - 2x + 5$$
 and $dv = e^{-x}dx$

$$u' = 2x - 2$$

$$u'' = 2$$

$$v_1 = e^{-x}$$

$$v_2 = e^{-x}$$

16) Evaluate $\int \sqrt{x^2 + 5} \, dx$

$$\int \sqrt{x^2 + 5} \, dx = \int \sqrt{x^2 + (\sqrt{5})^2} \, dx$$

$$= \frac{x}{2} \sqrt{x^2 + (\sqrt{5})^2} + \frac{(\sqrt{5})^2}{2} log \left| x + \sqrt{x^2 + (\sqrt{5})} \right| + c$$

$$= \frac{x}{2} \sqrt{x^2 + 5} + \frac{5}{2} log \left| x + \sqrt{x^2 + 5} \right| + c$$

17) Evaluate the integral as the limit of a sum: $\int_1^2 x^2 dx$

$$\int_a^b f(x) dx = \lim_{n o \infty h o 0} \sum_{r=1}^n h f(a+rh)$$

QB365

https://www.qb365.in/materials/

18) Evaluate
$$\int \frac{(a^{x}+b^{x})^{2}}{a^{x}b^{x}} dx$$

$$\int \frac{(a^{x}+b^{x})^{2}}{a^{x}b^{x}} dx = \int \frac{a^{2x}+b^{2x}+2a^{x}b^{x}}{2a^{x}b^{x}}$$
[: $(a + b)^{2} = a^{2} + 2ab + b^{2}$]
$$= \int \left(\frac{a^{2}x}{a^{x}b^{x}} + \frac{b^{2x}}{a^{x}b^{x}} + \frac{2a^{x}b^{x}}{a^{x}b^{x}}\right) dx$$

$$= \int \left(\frac{a^{x}}{b^{x}} + \frac{b^{x}}{a^{x}} + 2\right) dx$$

$$= \int \left(\left(\frac{a}{b}\right)^{x} + \left(\frac{b}{a}\right)^{x} + 2\right) dx$$

$$= \frac{\left(\frac{a}{b}\right)^{x}}{\log_{e}\left(\frac{a}{b}\right)} + \frac{\left(\frac{b}{a}\right)^{2}}{\log_{e}\left(\frac{b}{a}\right)} + 2x + c$$

19) Evaluate $\int \sin^3 x \cos x \, dx$ Let $I = \int \sin^3 x \cos x \, dx$ Put $t = \sin x$ $\Rightarrow dt = \cos x \, dx$ $\therefore I = t^3 . dt = \frac{t^4}{4} + c$ $= \frac{\sin^4 x}{4} + c$

20) Evaluate
$$\int \frac{1}{\sqrt{16x^2 + 25}} dx$$

$$\int \frac{1}{\sqrt{16x^2 + 25}} dx = \int \frac{1}{\sqrt{16\left(x^2 + \frac{25}{16}\right)}} dx$$

$$= \frac{1}{4} \int \frac{dx}{\sqrt{x^2 + \left(\frac{5}{4}\right)^2}}$$

$$= \frac{1}{4} \log \left| x + \sqrt{x + \left(\frac{5}{4}\right)^2} \right| + c$$

$$= \frac{1}{4} \log \left| \frac{4x + \sqrt{16x^2 + 25}}{4} \right| + c$$

$$= \frac{1}{4} \log \left| 4x + \sqrt{16x^2 + 25} \right| - \frac{1}{4} \log 4 + c$$

=
$$\frac{1}{4}log\left|4x+\sqrt{16x^2+25}\right|+c_1$$

where $c_1=-\frac{1}{4}log4+c$

21) Sketch the graph
$$y=|x+3|$$
 and evaluate $\int_{-6}^0|x+3|\,\mathrm{d}x$. $y=|x+3|=\left\{egin{array}{ll} x+3&if&x\geq -3\\ -(x+3)&if&x<-3 \end{array}
ight.$

Required area = $\int_{h}^{a} y dx = \int_{-6}^{0} y dx$

$$egin{aligned} &=\int_{b}^{a}ydx=\int_{-6}^{0}ydx\ &=\int_{-6}^{-3}{(x+3)}dx+\int_{-3}^{0}{(x+3)}dx \end{aligned}$$

$$= \int_{-6}^{-6} (x+3)dx + \int_{-3}^{-3} (x+3)dx$$

$$= -\left[\frac{(x+3)^2}{2}\right]_{-6}^{-3} + \left[\frac{(x+3)^2}{2}\right]_{-3}^{0} = \left[0 - \frac{9}{2}\right] + \left[\frac{9}{2} - 0\right] = 9 \text{ sq. units}$$

22) Using integration find the area of the circle whose center is at the origin and the radius is a units.

Equation of the required circle is $x^2 + y^2 = a^2$ (1)

put
$$y = 0$$
, $x^2 = a^2$

$$\Rightarrow x = \pm a$$

Since equation (1) is symmetrical about both the axes

The required area = 4 [Area in the first quadrant between the limit 0 and a.]

$$=4\int_0^a y dx$$

$$=4\int_{0}^{a}ydx=4\left[rac{x}{2}+\sqrt{a^{2}-x^{2}}dx+rac{a^{2}}{2}\sin^{-1}rac{x}{a}
ight]_{0}^{a}$$

$$d=4\Big[rac{x}{2}+\sqrt{a^2-x^2}dx+rac{a^2}{2} ext{sin}^{-1}rac{x}{a}\Big]_0^a$$

$$\pi^2$$
 sq. units

23) Find the area bounded by one arc of the curve $y = \sin ax$ and the x-axis.

The limits for one arch of the curve $y = \sin ax$ When $y = 0 \Rightarrow \sin ax = 0$

- \Rightarrow sin ax=sin 0, sin π
- \Rightarrow ax=0 or ax= π
- \Rightarrow x=0, x= $\frac{\pi}{a}$
- \therefore The limits are from x=0 to x= $\frac{\pi}{a}$

$$\therefore$$
 Area = $\int_a^b y dx$

$$=\int_0^a sin^a \, dx \, dx$$

$$= \left[-\frac{\cos \ ax}{a} \right]_0^{\frac{\pi}{a}}$$

$$egin{aligned} & = \int_0^{\pi} \frac{\cos ax}{a} \Big|_0^{\pi} \ & = -rac{1}{a} \Big[\cos a imes rac{\pi}{a} - \cos(a)(0)\Big] \ & = -rac{1}{a} \Big[\cos \pi - \cos0\Big] \end{aligned}$$

$$=-rac{1}{a}[cos \quad \pi-cos0]$$

$$=-\frac{1}{a}(-1-1)[\because cos0=1\& cos\pi=-1]$$

$$A = \frac{2}{a}$$
 sq.units.

24) Find the area of the region bounded by the line x - y = 1, x-axis and the lines x = -2and x = 0.

$$x-y=1$$

Here, the area lies below the x-axis

$$\therefore \quad A = \int_{-2}^{0} (-y) dx = \int_{0}^{-2} y dx$$

$$\left[\because \int_a^b f()dx = -\int_b^a f(x)dx \right]$$

$$egin{aligned} &\left[\because\int_a^bf()dx=-\int_b^af(x)dx
ight]\ &=\int_0^{-2}(x-1)dx=\left[rac{x^2}{2}-x
ight]_0^{-2} \end{aligned}$$

$$\left(rac{\left(-2
ight)^2}{2}-\left(2
ight)
ight)-0$$

$$=\frac{4}{2}+2=2+2$$

A=4 sq.units

25) The marginal revenue function is given by $R'(x) = \frac{3}{x^2} - \frac{2}{x}$. Find the revenue function and demand function if R(1)=6

Given
$$R'(x) = \frac{3}{x^2} - \frac{2}{x}$$

Given
$$R'(x)=rac{3}{x^2}-rac{2}{x}$$
 $\Rightarrow \int R'(x)=\int \Big(rac{3}{x^2}-rac{2}{x}\Big)dx$

$$\Rightarrow R(x) = rac{-3}{x} - 2log \quad x + k$$

$$\Rightarrow R(x) = \frac{-3}{x} - 2log \quad x + k$$
Given R(1) = 6 \Rightarrow when x = 1, R = 6
$$\Rightarrow 6 = \frac{-3}{1} - 2log1 + k$$

$$\Rightarrow 6 = \frac{-3}{1} - 2log1 + k$$

$$\Rightarrow$$
6+3=k [: log 1=0]

$$\Rightarrow$$
 k=9

$$\therefore R(x) = -\frac{3}{x} - 2log \quad x + 9$$

Demand function
$$P = \frac{R}{x}$$

$$= \frac{3}{x^2} - \frac{2\log x}{x} + \frac{9}{x}$$