QB365 Question Bank School
 HALF YEARLY EXAMINATION

10th Standard

Maths

Total Marks : 100

SECTION A

CHOOSE THE BEST ANSWER

1) If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is
(a) 3
(b) 2
(c) 4
(d) 8
2) If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, then $f o g$ is
(a) $\frac{3}{2 x^{2}}$
(b) $\frac{2}{3 x^{2}}$
(c) $\frac{2}{9 x^{2}}$
(d) $\frac{1}{6 x^{2}}$
3) $7^{4 k} \equiv$ \qquad $(\bmod 100)$
(a) 1
(b) 2
(c) 3
(d) 4
4) If the sequence $t_{1}, t_{2}, t_{3} \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
(a) a Geometric Progression
(b) an Arithmetic Progression
(c) neither an Arithmetic Progression nor a Geometric Progression
(d) a constant sequence
5) The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
(a) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(b) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(c) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(d) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
6) Graph of a linear equation is a \qquad
(a) straight line
(b) circle
(c) parabola
(d) hyperbola
7) If number of columns and rows are not equal in a matrix then it is said to be a
(a) diagonal matrix
(b) rectangular matrix
(c) square matrix
(d) identity matrix
8) If in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}, \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is
(a) 1.4 cm
(b) 1.8 cm
(c) 1.2 cm
(d) 1.05 cm
${ }^{9)}$ The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' a ' is
(a) 1
(b) 4
(c) -5
(d) 2
9) The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is
(a) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
(b) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
(c) $\mathrm{h} \tan \left(45^{\circ}-\beta\right)$
(d) none of these
10) The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is
(a) $\frac{9 \pi h^{2}}{8}$ sq.units
(b) $24 \pi h^{2}$ sq.units
(c) $\frac{8 \pi h^{2}}{9}$ sq.units
(d) $\frac{56 \pi h^{2}}{9}$ sq.units
11) The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
(a) $\frac{4}{3} \pi$
(b) $\frac{10}{3} \pi$
(c) 5π
(d) $\frac{20}{3} \pi$
12) Which of the following is incorrect?
(a) $\mathbf{P}(\mathrm{A})>1$
(b) $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
(c) $\mathrm{P}(\phi)=0$
(d) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\bar{A})=1$
13) The equation of a line passing through the origin and perpendicular to the line $7 x-3 y+4=0$ is
(a) $7 x-3 y+4=0$
(b) $3 x-7 y+4=0$
(c) $3 x+7 y=0$
(d) $7 x-3 y=0$

SECTION B

ANSWER ANY 10 QUESTIONS

Q.NO. 28 IS COMPULSORY
15) If $X=\{-5,1,3,4\}$ and $Y=\{a, b, c\}$, then which of the following relations are functions from X to Y ?
$\mathrm{R}_{1}=\{(-5, \mathrm{a}),(1, \mathrm{a}),(3, \mathrm{~b})\}$
Answer : $\mathrm{R}_{1}=\{(-5, \mathrm{a}),(1, \mathrm{a}),(3, \mathrm{~b})\}$
We may represent the relation R_{1} in an arrow diagram
R_{1} is not a function as $4 \in \mathrm{X}$ does not have an image in y .

16) Find k if f o $f(k)=5$ where $f(k)=2 k-1$.

Answer : fof(k)=f(f(k))
$=2(2 \mathrm{k}-1)-1=4 \mathrm{k}-3$
Thus, fof $f(k)=4 k-3$
But, it is given that fof(k)=5
Therefore $4 \mathrm{k}-3=5 \Rightarrow \mathrm{k}=2$
17) A positive integer when divided by 88 gives the remainder 61 . What will be the remainder when the same number is divided by 11 ?

Answer : Let the positive integer be ' n '
So $\mathrm{n}=88(\mathrm{p})+61$, where p be an integer
$\mathrm{n}=88(\mathrm{p})+(5 \times 11+6)$
$\mathrm{n}=8 \times 11 \times \mathrm{p}+5 \times 11+6$
$n=11(8 p+5)+6$
Dividing both the sides by 11 , we get
$\frac{n}{11}=(8 p+5)+\frac{6}{11}$
When the same number n is divided by 11 the remainder will be 6 .
18) Find the $8^{\text {th }}$ term of the G.P $9,3,1, \ldots$.

Answer : The find the 8th term we have use the $\mathrm{n}^{\text {th }}$ term formula $\mathrm{tn}=\mathrm{ar}^{\mathrm{n}-1}$
First term $\mathrm{a}=9$, common radio $\mathrm{r}=\frac{t_{2}}{t_{1}}=\frac{3}{9}=\frac{1}{3}$
$t_{8}=9 \times\left(\frac{1}{3}\right)^{8-1}=9 \times\left(\frac{1}{3}\right)^{7}=\frac{1}{243}$
Therefore the 8 th term of the G.P is $\frac{1}{243}$
19) Determine the nature of the roots for the following quadratic equations
$9 a^{2} b^{2} x^{2}-24 a b c d x+16 c^{2} d^{2}=0, a \neq 0, b \neq 0$

Answer: $9 a^{2} b^{2} x^{2}-24 a b c d x+16 c^{2} d^{2}=0$
a
b
c
$\Delta=b^{2}-4 \mathrm{ac}$
$=(-24 a b c d)^{2}-4 \times 9 a^{2} b^{2} \times 16 c^{2} d^{2}$
$=576 a^{2} b^{2} c^{2} d^{2}-576 a^{2} b^{2} c^{2} d^{2}$
$=0$
\therefore The roots are real and equal.
20) Solve the following quadratic equations by formula method
$2 x^{2}-5 x+2=0$
Answer: $2 x^{2}-5 x+2=0$
The formula for finding roots of a quadratic equation $a x^{2}+b x+c=0$ is
$2 x^{2}-5 x+2=0$
a b c
$\therefore=x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 2 \times 2}}{2 \times 2}$
$=\frac{5 \pm \sqrt{25-16}}{4}$
$=\frac{5 \pm \sqrt{9}}{4}=\frac{5 \pm 3}{4}=\frac{8}{4}, \frac{2}{4}$
\therefore Solutions is $2, \frac{1}{2}$
21)

If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
Answer : If $\mathrm{A}=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right], \mathrm{A}^{\mathrm{T}}=\left[\begin{array}{ccc}5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1\end{array}\right]$
$\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right]=\mathrm{A}$
\therefore verified
22) In two concentric circles, a chord of length 16 cm of larger circle becomes a tangent to the smaller circle whose radius is 6 cm . Find the radius of the larger circle.

Answer :

Let o be the center of concentric circies and APB be the chord of length 16 cm of the larger circle touching the smaller circle at p .
Then $\mathrm{OP} \perp \mathrm{AB}$ and p is the midpoint of AB .
$\mathrm{AP}=\mathrm{PB}=8 \mathrm{~cm}$
In LOPA, we have
$\mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$ [By pythagoras Theorem $]$
$\mathrm{OA}^{2}=6^{2}+8^{2}$
$\mathrm{OA}^{2}=36+64$
$\mathrm{OA}^{2}=100$
$\mathrm{OA}=10 \mathrm{~cm}$
Radius of the larger circle in 10 cm
23) Show that the given points are collinear: $(-3,-4),(7,2)$ and $(12,5)$

Answer : Given points (-3, - 4), (7, 2) and (12, 5)
Let the points be $\mathrm{A}(-3,-4), 8(2,2)$ and $\mathrm{C}(12,5)$
Slope of a line $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
Slope of $\mathrm{AB}=\frac{-4-2}{-3-7}=\frac{-6}{-10}=\frac{3}{5}$
Slope of $\mathrm{BC}=\frac{2-5}{7-12}=\frac{-3}{-5}=\frac{3}{5}$
Slope of $A B=$ Slope of $B C$
The points A, B and C are collinear
24) Find the equation of a straight line passing through the point $\mathrm{P}(-5,2)$ and parallel to the line joining the points $\mathrm{Q}(3,-2)$ and $\mathrm{R}(-5,4)$.

Answer : The vertices $\mathrm{Q}(3,-2)$ and $\mathrm{R}(-5,4)$
slope of the line $\mathrm{QR}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
$=\frac{-2-4}{3+5}=\frac{-6}{8}=\frac{-3}{4}$
Slope of the line parallel to QR is $-\frac{3}{4}$
Equation of the line passing through
$\mathrm{P}(-5,2)$ and having slope $-\frac{3}{4}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
y-2 $=-\frac{3}{4}(x+5)$
$4 \mathrm{y}-8=-3 \mathrm{x}-15$
$3 x+4 y+7=0$
${ }^{25)}$ prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
Answer : $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}}$ [multiply numerator and denominator by the conjugate of $1-\cos \theta_{]}$
$=\sqrt{\frac{(1+\cos \theta)^{2}}{(1-\cos \theta)^{2}}}=\frac{1+\cos \theta}{\sqrt{\sin ^{2} \theta}}\left[\right.$ since $\left.\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=\frac{1+\cos \theta}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta$
26) A garden roller whose length is 3 m long and whose diameter is 2.8 m is rolled to level a garden. How much area will it cover in 8 revolutions?

Answer : Given that, diameter $\mathrm{d}=2.8 \mathrm{~m}$ and height $=3 \mathrm{~m}$
radius $\mathrm{r}=1.4 \mathrm{~m}$
Area covered in one revolution = curved surface area of the cylinder
$=2 \pi \mathrm{rh}$ sq. units
$2 \times \frac{22}{7} \times 1.4 \times 3=26.4$
Area covered in 1 revolution $=26.4 \mathrm{~m}^{2}$
Area covered in 8 revolutions $=8 \times 26.4=211.2$
Therefore, area covered is $211.2 \mathrm{~m}^{2}$
27) The volume of a solid right circular cone is $11088 \mathrm{~cm}^{3}$. If its height is 24 cm then find the radius of the cone.

Answer : Let r and h be the radius and height of the cone respectively.
Given that, volume of the cone $=11088 \mathrm{~cm}^{3}$
$\frac{1}{3} \pi r^{2} h=11088$
$\frac{1}{3} \times \frac{22}{7} \times r^{2} \times 24=11088$
$r^{2}=441$
Therefore, radius of the cone $\mathrm{r}=21 \mathrm{~cm}$.
28) Find the standard deviation of first 50 natural numbers.

Answer : Standard deviation of first n natural numbers
$=\sqrt{\frac{n^{2}-1}{12}}$
S.D. of first 50 natural numbers $=\sqrt{\frac{50^{2}-1}{12}}$
$=\sqrt{\frac{2500-1}{12}}=\sqrt{\frac{2499}{12}}$
$=\sqrt{208.25}=14.43$
Standard deviation of first 50 natural numbers
$=14.43$

SECTION C

$10 \mathrm{X} 5=50$

ANSWER ANY 10 QUESTIONS

Q.NO. 42 IS COMPULSORY
29) Let $\mathrm{A}=$ The set of all natural numbers less than $8, \mathrm{~B}=$ The set of all prime numbers less than $8, \mathrm{C}=$ The set of even prime number. Verify that
$\mathrm{Ax}(\mathrm{B}-\mathrm{C})=(\mathrm{AxB})-(\mathrm{AxC})$
Answer : Given
$\mathrm{A}=\{1,2,3,4,5,6,7\}$
$B=\{2,3,5,7\}$
$\mathrm{C}=\{2\}$
$\mathrm{Ax}(\mathrm{B}-\mathrm{C})=(\mathrm{AxC})-(\mathrm{AxC})$
$\mathrm{B}-\mathrm{C}=\{2,3,5,7\}-\{2\}$
$=\{3,5,7\}$
$\mathrm{A} \times(\mathrm{B}-\mathrm{C})=\{1,2,3,4,5,6,7\} \times\{3.5 .7\}$
$=\{(1,3),(1,5),(1,7),(2,3),(2,5),(2,7)(3,3),(3,5),(3,7),(4,3),(4,5),(4,7)(5,7),(5,3),(5,5)(6,3),(6,5),(6,7),(7,3),(7,5),(7,7)\}$
....(1)
$\mathrm{A} \times \mathrm{B}=\{1,2,3,4,5,6,7\} \times\{2,3,5,7\}$
$=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7)(3,2),(3,3),(3,5),(3,7),(4,2),(4,3),(4,5),(4,7)(5,2),(5,3),(5,5),(5,7),(6,2)$,
$(6,3),(6,5),(6,7)(7,2),(7,3),(7,5),(7,7)\}$
$\mathrm{A} \times \mathrm{C}=\{1,2,3,4,5,6,7\} \times\{2\}$
$=\{(1,2),(2,2),(3,2),(4,2),(5,2)(6,2),(7,2)\}$
$(\mathrm{AxB})-(\mathrm{AxC})=\{(1,3),(1,5),(1,7),(2,3)(2,5),(2,7),(3,3),(3,5)(3,7),(4,3),(4,5),(4,7),(5,3),(5,5),(5,7),(6,3)(6,5),(6,7)$,
(7,3),(7,5),(7,7)\}
From (1) and (2), it is clear that
$\mathrm{Ax}(\mathrm{B}-\mathrm{C})=(\mathrm{AxB})-(\mathrm{AxC})$
Hence verified
30) A function f: $[-5,9] \rightarrow R$ is defined as follows:
$f(x)=\left[\begin{array}{ll}6 x+1 & \text { if }-5 \leq x<2 \\ 5 x^{2}-1 & \text { if } 2 \leq x<6 \\ 3 x-4 & \text { if } 6 \leq x \leq 9\end{array}\right.$
Find
i) $f(-3)+f(2)$
ii) $f(7)-f(1)$
iii) $2 \mathrm{f}(4)+\mathrm{f}(8)$
iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

Answer : f: $[-5,9] \rightarrow \mathrm{R}$
(i) $\mathrm{f}(-3)+\mathrm{f}(2)$
$=[6(-3)+1]+\left[5(2)^{2}-1\right]$
$=(-18+1)+(20-1)$
$=-17+19=2$.
(ii) $f(7)-f(1)$
$=[3(7)-4]-[6(1)+1]$
$=(21-4)-(6+1)$
$=17-7=10$
(iii) $2 \mathrm{f}(4)+\mathrm{f}(8)$
$=2\left[5(4)^{2}-1\right]+[3(8)-4]$
$=2[80-1]+[24-4]$
$=158+20=178$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$
$f(-2)=6 x+1=6(-2)+1=-11$
$f(6)=3 x-4=3(6)-4=14$
$\mathrm{f}(4)=5 \mathrm{x}^{2}-1=5\left(4^{2}\right)-1=79$
$\mathrm{f}(-2)=6 \mathrm{x}+1=6(-2)+1=-11$
$\frac{2 f(-2)-f(6)}{f(4)+f(-2)}=\frac{2(-11)-14}{79+(-11)}=\frac{-22-14}{68}$
$=\frac{-36}{68}=\frac{-9}{17}$
31) Find the sum of all natural numbers between 300 and 600 which are divisible by 7 .

Answer : The natural numbers between 300 and 600 which are divisible by 7 are $301,308,315, \ldots, 595$.
The sum of all natural numbers between 300 and 600 is $301+308+315+\ldots+595$
The terms of the above series are in A.P.
First term $\mathrm{a}=301$; common difference $\mathrm{d}=7$; Last term $\mathrm{l}=595$.
$n=\left(\frac{l-a}{d}\right)+1=\left(\frac{595-301}{7}\right)+1=43$
Since, $S_{n}=\frac{n}{2}[a+l]$, we have $s_{43}=\frac{43}{2}[301+595]=19264$
32) If A, B, C are any three events such that probability of B is twice as that of probability of A and probability of C is thrice as that of probability of A and if $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6}, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\frac{1}{4}, \mathrm{P}(\mathrm{A} \cap \mathrm{C}), \frac{1}{8}, \mathrm{P}\left(\mathrm{A} \mathrm{P}(\mathrm{A} \mathrm{U} \mathrm{B} \mathrm{U} \mathrm{C})=\frac{9}{10}, \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\right.$ $\frac{1}{15}$, then find $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{C})$?

Answer: Given $P(A \cap B)=\frac{1}{6}$
$P(B \cap C)=\frac{1}{4}$
$P(A \cap C)=\frac{1}{8}$
$P(A \cup B \cup C)=\frac{9}{10}$
$P(A \cap B \cap C)=\frac{1}{15}$
Also given that $\mathrm{P}(\mathrm{B})=2 \mathrm{P}(\mathrm{A})$
$\mathrm{P}(\mathrm{C})=3 \mathrm{P}(\mathrm{A})$
Now
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$
$\frac{9}{10}=\mathrm{P}(\mathrm{A})+2 \mathrm{P}(\mathrm{A})+3(\mathrm{P}(\mathrm{A}))-\frac{1}{6}-\frac{1}{4}-\frac{1}{8}+\frac{1}{15}$
$\frac{9}{10}=6 \mathrm{P}(\mathrm{A})-\frac{1}{6}-\frac{1}{4}-\frac{1}{8}+\frac{1}{15}$
$6 \mathrm{P}(\mathrm{A})=\frac{9}{10}+\frac{1}{6}+\frac{1}{4}+\frac{1}{8}-\frac{1}{15}$
$6 \mathrm{P}(\mathrm{A})=\frac{108+20+30+15-8}{120}$
$6 \mathrm{P}(A)=\frac{165}{120}$
$\mathrm{P}(\mathrm{A})=\frac{165}{120 \times 6}=\frac{11}{48}$
$P(B)=2 \times \frac{11}{48}=\frac{11}{24}$
$\mathrm{P}(\mathrm{C})=3 \times \frac{11}{48}=\frac{11}{16}$
$\mathrm{P}(\mathrm{A})=\frac{11}{48} ; \mathrm{P}(\mathrm{B})=\frac{11}{24} ; \mathrm{P}(\mathrm{C})=\frac{11}{16}$
33) In an interschool atheletic meet, with 24 individual events, securing a total of 56 points, a first place secures 5 points, a second place secures 3 points, and a third place secures 1 point. Having as many third place finishers as first and second place finishers, find how many athletes finished in each place.

Answer : Let the number of I, II and III place finishers be x, y and z respectively.
Total number of events $=24$; Total number of points $=56$.
Hence, the linear equations in three variables are
$x+y+z=24 \ldots$ (1) $5 x+3 y+z=56 \ldots$ (2) $x+y=z \ldots$
Substituting (3) in (1) we get, $z+z=24$ gives, $z=12$
Therefore, (3) equation will be, $x+y=12$
(3) will be, $x+y=12$

$$
\begin{array}{ll}
\begin{array}{l}
\text { (2) is } \\
3 \times(3) \text { is }
\end{array} & \begin{aligned}
5 x+3 y & =44 \\
3 x+3 y & =36
\end{aligned} \\
& (-) \\
& 2 x \\
\hline 2 x & =8
\end{array} \text { we get, } s=4
$$

Substituting $x=4, z=12$ in (3) we get, $y=12-4=8$
Therefore, Number of first place finishers is 4
Number of second place finishers is 8
Number of third place finishers is 12 .
34) Find the values of a and b if the following polynomials are perfect squares
$4 x^{4}-12 x^{3}+37 x^{2}+b x+a$

Answer :

$b=-42$
$a=49$
35) If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ show that $\mathrm{A}^{2}-(\mathrm{a}+\mathrm{d}) \mathrm{A}=(\mathrm{bc}-\mathrm{ad}) \mathrm{I}_{2}$

Answer : $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]$
$(a+d) A=(a+d)\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$=\left[\begin{array}{ll}a(a+d) & b(a+d) \\ c(a+d) & d(a+d)\end{array}\right]$
$=\left[\begin{array}{ll}a^{2}+a d & a b+b d \\ a c+c d & a d+d^{2}\end{array}\right]$
$\mathrm{A}^{2}-(\mathrm{a}+\mathrm{d}) \mathrm{A}$
$=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right]-\left[\begin{array}{ll}a^{2}+a d & a b+b d \\ a c+c d & a d+d^{2}\end{array}\right]$
$=\left[\begin{array}{cc}b c-a d & 0 \\ 0 & b c-a d\end{array}\right]$
Now $(\mathrm{bc}-\mathrm{ad}) \mathrm{I}_{2}=(b c-a d)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}b c-a d & 0 \\ 0 & b c-a d\end{array}\right]$
From (1) and (2)
$A^{2}-(a+d) A=(b c-a d) I_{2}$
Hence proved.
36) Show that the angle bisectors of a triangle are concurrent.

Answer :

Let $\triangle \mathrm{ABC}$ be B triangle points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are angular bisectors of $\angle A, \angle B$ and $\angle C$ respectively. By angular bisector theorem we have
$\frac{B D}{D C}=\frac{A B}{A C} \Rightarrow \mathrm{AB}=\frac{B D \times A C}{D C}$
$\frac{A C}{B C}=\frac{A F}{F B} \Rightarrow \mathrm{AC}=\frac{A F \times B C}{F B}$
$\frac{A E}{E C}=\frac{A B}{B C} \Rightarrow \mathrm{AB}=\frac{A E \times B C}{E C}$
From (1) and (3), we have
$\frac{B D \times A C}{D C}=\frac{A E \times B C}{E C}$
Now substituting (2) in (4) we have
$\frac{B D \times\left(\frac{A F \times B C}{F B}\right)}{D C}=\frac{A E \times B C}{E C}$
$\frac{B D \times A F \times B C}{D C \times F B}=\frac{A E \times B C}{E C}$
$B D \times A F \times E C=\frac{A E \times B C \times D C \times F B}{B C}$
$B D \times A F \times C E=E A \times F B \times D C$
$\therefore \frac{B D \times A F \times C E}{E A \times F B \times D C}=1$
Hence by Ceva's theorem we conclude that the angle bisectors of a triangle are concurrent.
37) Find the area of the quadrilateral formed by the points $(8,6),(5,11),(-5,12)$ and $(-4,3)$.

Answer : Before determining the area of quadrilateral, plot the vertices in a graph.
Let the vertices be $\mathrm{A}(8,6), \mathrm{B}(5,11), \mathrm{C}(-5,12)$ and $\mathrm{D}(-4,3)$.
Therefore, area of the quadrilateral ABCD
$=\frac{1}{2}\left\{\left(\mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{x}_{2} \mathrm{y}_{3}+\mathrm{x}_{3} \mathrm{y}_{1}\right)-\left(\mathrm{x}_{2} \mathrm{y}_{1}+\mathrm{x}_{3} \mathrm{y}_{2}+\mathrm{x}_{1} \mathrm{y}_{3}\right)\right\}$
$=\frac{1}{2}\{(80+60-15-24)-(30-55-48+24)\}$
$=\frac{1}{2}\{109+49\}$
$=\frac{1}{2}\{158\}=79$ sq.units

38) Find the equation of the median and altitude of $\Delta A B C$ through A where the vertices are $A(6,2), B(-5,-1)$ and $C(1,9)$

Answer :

Given vertices are $\mathrm{A}(6,2), \mathrm{B}(-5,-1)$ and $\mathrm{C}(1,9)$
Median through A :
Let D be the mid point of BC
Mid point of $\mathrm{BC}=\mathrm{D}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\mathrm{D}\left(\frac{-5+1}{2}, \frac{-1+9}{2}\right)$
$=\mathrm{D}(-2,4)$
Now AD is the median.
Equation of AD $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
$\frac{y-2}{4-2}=\frac{x-6}{-2-6}$
$\frac{y-2}{2}=\frac{x-6}{-8}$
$-4 y+8=x-6$
$x+4 y-14=0$
Altitude through A

Altitude is passing through ' A ' and perpendicular to BC .
Now,
Slope of $\mathrm{BC}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-1-9}{-5-1}=\frac{-10}{-6}=\frac{5}{3}$
Slope of Altitude $=-\frac{3}{5}$
Equation of the altitude which is passing through $\mathrm{A}(6,2)$ and having slope $-\frac{3}{5}$ is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-2=-\frac{3}{5}(x-6)$
$5 y-10=-3 x+18$
$3 x+5 y-28=0$
39) A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 40°. Find the height of the pedestal. $\left(\tan 40^{\circ}=0.8391, \sqrt{3}=1.732\right)$

Answer :

Let CD be the statue of tall 1.6 m .
BC be the pedestal.
From the right triangle $\triangle \mathrm{ABC}$
$\tan 40^{\circ}=\frac{B C}{A B}$
$0.8391=\frac{{ }_{B C}^{A B}}{A B}$
$A B=\frac{B C}{0.8391}$
From the right triangle $\triangle \mathrm{ABD}$
$\tan 60^{\circ}=\frac{B D}{A B}$
$\sqrt{3}=\frac{B C+C D}{A B}$
$1.732=\frac{{ }^{A B}+1.6}{A B}$
$A B=\frac{B C+1.6}{1.732}$
From (1) and (2)
$\frac{B C}{0.8391}=\frac{B C+1.6}{1.732}$
$1.732 \mathrm{BC}=0.8391(\mathrm{BC}+1.6)$
$1.732 \mathrm{BC}=0.8391 \mathrm{BC}+(0.8391)(1.6)$
$1.732 \mathrm{BC}-0.8391 \mathrm{BC}=1.34256$
$0.8929 \mathrm{BC}=1.34256$
$\mathrm{BC}=\frac{1.34256}{0.8929}=\frac{13425.6}{8929}=1.5 \mathrm{~m}$
Height of the pedestal $=1.5 \mathrm{~m}$
40) Arul has to make arrangements for the accommodation of 150 persons for his family function. For this purpose, he plans to build a tent which is in the shape of cylinder surmounted by a cone. Each person occupies $4 \mathrm{sq} . \mathrm{m}$ of the space on ground and 40 cu . meter of air to breathe. What should be the height of the conical part of the tent if the height of cylindrical part is 8 m ?

Answer :

Let h_{1} and h_{2} be the height of cylinder and cone respectively
Area for one person $=4$ sq.m
Total number of persons $=150$
Therefore total base area $=150 \times 4$
$\pi r^{2}=600$ \qquad (1)

Volume of air required for 1 person $=40 \mathrm{~m}^{3}$
Total Volume of air required for 150 persons $=150 \times 40=6000 \mathrm{~m}^{3}$
$\pi r^{2} h_{1}+\frac{1}{3} \pi r^{2}=6000$
$\pi r^{2}\left(h_{1}+\frac{1}{3} h_{2}\right)=6000$
$600\left(8+\frac{1}{3} h_{2}\right)=6000 \quad[u \operatorname{sing}(1)]$
$8+\frac{1}{3} h_{2}=\frac{6000}{600}$
$\frac{1}{3} h_{2}=10-8=2$
$\mathrm{h}_{2}=6 \mathrm{~m}$
Therefore, the height of the conical tent h_{2} is 6 m
41) The internal and external diameter of a hollow hemispherical shell are 6 cm and 10 cm respectively. If it is melted and recast into a solid cylinder of diameter 14 cm , then find the height of the cylinder.

Answer : Hollow Hemisphere
Internal diameter $=6 \mathrm{~cm}$
Internal radius ' r ' $=3 \mathrm{~cm}$
External diameter $=10 \mathrm{~cm}$
External radius ' R ' $=5 \mathrm{~cm}$
$\left.\begin{array}{c}\text { Volume of hemisphere (or) } \\ \text { Volume of material used }\end{array}\right\}=\frac{2}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$ cu. units
$=\frac{2}{3} \pi\left(5^{3}-3^{3}\right)$
$=\frac{2}{3} \pi(125-27)=\frac{196 \pi}{3} \mathrm{~cm}^{3}$
Cylinder
Diameter $=14 \mathrm{~cm}$
radius $=7 \mathrm{~cm}$
height $=\mathrm{h}$
Volume of cylinder $=\pi r^{2} h$ cu. units
$=\pi(7)^{2} h$
$=49 \pi h \mathrm{~cm}^{3}$
Given that hollow hemisphere is melted and cast into a solid cylinder
Volume of cylinder $=$ volume of hollow hemisPhere
$49 \pi h=\frac{196 \pi}{3}$
$h=\frac{196}{3 \times 49}=\frac{4}{3}=1.33$
Height of the cylinder $=1.33 \mathrm{~cm}$.
42) If m times $m^{\text {th }}$ term of an A.P is equal to n times its $n^{\text {th }}$ term then show that the $(m+n)$ th term of the A.P is Zero.

Answer : On subtracting equation (2) from equation (1), equation (3) from equation (2)and equation (1) from equation
(3), we get

```
\(x-y=(1-m) d\)
\(y-z=(m-n) d\)
\(z-x=(n-1) d\)
\((x-y) n+(y-z) 1+(z-x) m=[(1-m) n+(m-n) 1+(n-1) m] d\)
\(=[\ln -\mathrm{mn}+\operatorname{lm}-\mathrm{nl}+\mathrm{nm}-\operatorname{lm}] \mathrm{d}=0\).
```


SECTION D

ANSWER BOTH THE QUESTIONS
43) a) Graph the following quadratic equations and state their nature of solutions.
$x^{2}-4 x+4=0$

Answer : $\mathrm{x}^{2}-4 \mathrm{x}+\mathbf{4}=0$
$\left.\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|}\hline \mathrm{x} & -4 & -3 & -2 & -1 & 0 & 1 & 2\end{array}\right)$
x^{2}

Step 1: Points to be plotted: $(-4,36),(-3,25),(-2,16),(-1,9),(0,4),(1,1),(2,0),(3,1),(4,4)$
Step 2: The point of intersection of the curve with x axis is $(2,0)$
Step 3:

Since there is only one point of intersection with x axis, the quadratic equation $X^{2}-4 x+4=0$ has real and equal roots.
\therefore Solution $\{2,2\}$

$$
(\mathrm{OR})
$$

b) A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find
i. the marked price when a customer gets a discount of Rs. 3250 (from graph)
ii. the discount when the marked price is Rs. 2500.

Answer : Let y be the marked price of an item and x be the discount on that item
Now it is given that the garment shop announces a flat 50% discount on every purchase of items for their customers
$\Longrightarrow x=y \times \frac{50}{100}$
$\Longrightarrow x=y \times \frac{1}{2}$
$\Longrightarrow y=2 x$
Which is the required relationship between the Marked Price and the Discount.

(1) We have to find the marked price when a customer gets a discount of 3250

As discount is 3250
In the graph is represent the point $\mathrm{F}(3250,0)$
If we draw a line parallel to Y axis and passing through the point $F(3250,0)$ then it intersects the line $y=2 x$ at B(3250, 6500)
Accordingly we get the point A $(3250,6500)$
Hence the Marked Price $=6500$
Manually it can be checked
As discount is 3250
$\mathrm{x}=3250$
So $y=2 \times 3250=6500$
(2) We have to find the discount when the marked price is 2500

As marked price is 2500
In graph it represent the point $C(0,2500)$
If we draw a line parallel to X axis and passing through the point $\mathrm{C}(0,2500)$ then it intersects the line $\mathrm{y}=2 \mathrm{x}$ at B(1250, 2500)
Accordingly we get the point $B(1250,2500)$

Hence the discount $=1250$

Manually it can be checked
As marked price is 2500
$y=2500$
So $\mathrm{x}=2500 \div 2=1250$
44) a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle $\mathrm{PQR}\left(\right.$ scale factor $\frac{3}{5}<1$)

Answer : Given a triangle PQR we are required to construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR .

Steps of construction

1. Construct a $\triangle \mathrm{PQR}$ with any measurement
2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P .
3. Locate 5 (the greater of 3 and 5 in $\frac{3}{5}$) points.
$\mathrm{Q}_{1} \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$ and Q_{5} on QX so that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}=\mathrm{Q}_{4} \mathrm{Q}_{5}$
4. Join $\mathrm{Q}_{5} \mathrm{R}$ and draw a line through Q_{3} (the third point, 3 being smaller of 3 and 5 in $\frac{3}{5}$) parallael to $\mathrm{Q}_{5} \mathrm{R}$ to intersect QR at R'.
5. Draw line through R^{\prime} parallel to the line RP to intersect QP at P^{\prime}.

Then, $\triangle P^{\prime} Q R$ ' is the required triangle each of whose sides is three-fifths of the corresponding sides of $\triangle P Q R$.
(OR)
b) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.

Answer : The distance between the point from the centre is 10 cm .

Length of the tangents PA - $\mathrm{PB}=8.7 \mathrm{~cm}$
Construction:
Steps:
(1) With O as centre, draw a circle of radius 5 cm .
(2) Draw a line $\mathrm{OP}=10 \mathrm{~cm}$.
(3) Draw a perpendicular bisector of OP which cuts OP at M.
(4) With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .
(5) Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA and $\mathrm{PB}=8.7 \mathrm{~cm}$

