QUESTION BANK SOFTWARE QB365 MODEL HALF YEARLY QUESTION 2024

9th Standard

Reg.No. :

Maths

Time : 03:00:00 Hrs

1) Which of the following is correct?
(a) $\{7\} \in\{1,2,3,4,5,6,7,8,9,10\}$
(b) $7 \in\{1,2,3,4,5,6,7,8,9,10\}$
(c) $7 \notin\{1,2,3,4,5,6,7,8,9,10\}$
(d) $\{7\} \nsubseteq\{1,2,3,4,5,6,7,8,9,10\}$
2) An irrational number between 2 and 2.5 is \qquad -.
(a) $\sqrt{11}$
(b) $\sqrt{5}$
(c) $\sqrt{2.5}$
(d) $\sqrt{8}$
3) The type of the polynomial $4-3 x^{3}$ is \qquad .
(a) constant polynomial
(b) linear polynomial
(c) quadratic polynomial
(d) cubic polynomial.
4) Cubic polynomial may have maximum of \qquad linear factors.
(a) 1
(b) 2
(c) 3
(d) 4
5) In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that $\mathrm{CE}=\mathrm{ED}=8 \mathrm{~cm}$ and $\mathrm{EB}=4 \mathrm{~cm}$. The radius of the circle is \qquad _.

(a) 8 cm
(b) 4 cm
(c) 6 cm
(d) 10 cm
$6)$ In what ratio does the y-axis divides the line joining the points $(-5,1)$ and $(2,3)$ internally \qquad -
(a) 1:3
(b) $2: 5$
(c) $3: 1$
(d) $5: 2$
6) The mean of the square of first 11 natural numbers is \qquad -.
(a) 26
(b) 46
(c) 48
(d) 52
7) The value of $\operatorname{cosec}\left(70^{0}+\theta\right)-\sec \left(20^{\circ}-\theta\right)+\tan \left(65^{\circ}+\theta\right)-\cot \left(25^{\circ}-\theta\right)$ is \qquad _.
(a) 0
(b) 1
(c) 2
(d) 3
8) If the lateral surface area of a cube is $600 \mathrm{~cm}^{2}$, then the total surface area is \qquad -.
(a) $150 \mathrm{~cm}^{2}$
(b) $400 \mathrm{~cm}^{2}$
(c) $900 \mathrm{~cm}^{2}$
(d) $1350 \mathrm{~cm}^{2}$
9) Which of the following is a formula to find the sum of interior angles of a quadrilateral of n-sides?
(a) $\frac{n}{2} \times 180$
(b) $\left(\frac{n+1}{2}\right) 180^{0}$
(c) $\left(\frac{n-1}{2}\right) 180^{\circ}$
(d) $(\mathrm{n}-2) 180^{\circ}$
10) The centre of a circle is $(0,0)$. One end point of a diameter is $(5,-1)$, then \qquad
(a) $\sqrt{24}$
(b) $\sqrt{37}$
(c) $\sqrt{26}$
(d) $\sqrt{17}$
11) Data available in an unorganized form is called \qquad data
(a) Grouped data
(b) class interval
(c) mode
(d) raw data
12) if $\sin \alpha=\frac{1}{2}$ and α is a cute, then $\left(3 \cos \alpha-4 \cos ^{3} \alpha\right)$ is equal to
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{1}{6}$
(d) -1
13) The area of a triangle whose sides are a, b and c is \qquad
(a) $\sqrt{(s-a)(s-b)(s-c)}$ sq. units
(b) $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units
(c) $\sqrt{s(s \times a)(s \times b)(s \times c)}$ sq. units
(d) $\sqrt{s(s-a)(s-b)(s-c)}$ sq. units

SECTION B

15) If $\mathrm{A}=\{0,2,4,6,8\}, \mathrm{B}=\{\mathrm{x}: \mathrm{x}$ is a prime number and $\mathrm{x}<11\}$ and $\mathrm{C}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}$ and $5 \leq \mathrm{x}<9\}$ then verify $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Answer : Given $\mathrm{A}=\{0,2,4,6,8\}, \mathrm{B}=\{2,3,5,7\}$ and $\mathrm{C}=\{5,6,7,8\}$
First, we find $B \cap C=\{5,7\}, A \cup(B \cap C)=\{0,2,4,5,6,7,8\}$ \qquad
Next, $A \cup B=\{0,2,3,4,5,6,7,8\}, A \cup C=\{0,2,4,5,6,7,8\}$
Then, $(A \cup B) \cap(A \cup C)=\{0,2,4,5,6,7,8\}$ \qquad (2)

From (1) and (2), it is verified that $(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
16) Write the following in the form of $4^{\text {n }}$:

16
Answer : $16=4^{2}$
17) Check whether $p(x)$ is a multiple of $g(x)$ or not
$p(x)=x^{3}-5 x^{2}+4 x-3 ; g(x)=x-2$
Answer: $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}^{2}+4 \mathrm{x}-3$
$\mathrm{g}(\mathrm{x})=\mathrm{x}-2$
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}^{2}+4 \mathrm{x}-3$
$\mathrm{p}(2)=(2)^{3}-5(2)^{2}+4(2)-3$
$=8-5(4)+8-3$
$=8-20+g-3$
$=16-23$
$=-7$
$\therefore \mathrm{P}(\mathrm{x})$ is not a multiple of $\mathrm{g}(\mathrm{x})$
18) Step - 1

Cut out four different quadrilaterals from coloured glazed papers.

Step-2
Fold the quadrilaterals along their respective diagonals. Press to make creases. Here, dotted line represent the creases.

Step - 3
Fold the quadrilaterals along both of their diagonals. Press to make creases.

We observe that two imposed triangles are congruent to each other. Measure the lengths of portions of diagonals and angles between the diagonals.
Also do the same for the quadrilaterals such as Trapezium, Isosceles Trapezium and Kite. From the above activity, measure the lengths of diagonals and angles between the diagonals and record them in the table below:

S.No	Name of the quadrilateral	Length along diagonals						Measure of angles			
				OA	OB	OC	OD	$\angle \mathrm{AOB}$	$\angle B O C$	$\angle \mathrm{COD}$	$\angle \mathrm{DOA}$
1.	Trapezium										
2.	Isosceles Trapezium										
3.	Parallelogram										
	Rectangle										
5.	Rhombus										
6.	Square										
7.	Kite										

Answer :

19) In which quadrant does the following points lie? $(3,-8)$

Answer : The x - coordinate is positive and y - coordinate is negative. So, Point(3,-8) lies in the IV quadrant.
20) In a research laboratory scientists treated 6 mice with lung cancer using medicine. Ten days, they measured the volume of the tumor of the tumor in each mouse given the results in the table

Mouse marking	1	2	3	4	5	6
Tumor Volume(mm) 3	145	148	142	141	139	140

Find the mean
Answer : $\bar{x}=\frac{\Sigma x}{n}=\frac{145+148+142+141+139+140}{6}=\frac{855}{6}$
$\mathrm{x}=142.5 \mathrm{~mm}^{2}$
21) From the given figure, find all the trigonometric ratios of angle B.

Answer :

$\sin \mathrm{B}=\frac{9}{41}$;
$\cos B=\frac{40}{41}$;
$\tan \mathrm{B}=\frac{9}{40}$;
$\operatorname{cosec} \mathrm{B}=\frac{1}{\sin B}=\frac{41}{9}$;
$\sec \mathrm{B}=\frac{1}{\cot B}=\frac{41}{40}$;
$\cot \mathrm{B}=\frac{1}{\tan B}=\frac{40}{9}$
22) If the total surface area of a cube is $2400 \mathrm{~cm}^{2}$ then, find its lateral surface area.

Answer : $6 \mathrm{a}^{2}=2400 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{a}^{2}=\frac{2400}{6}$
$\therefore 4 \mathrm{a}^{2}=\frac{4 \times 2400}{6}$
$=1600 \mathrm{~cm}^{2}$.
23) What is the probability of drawing a King or a Queen or a Jack from a deck of cards?

Answer : Number of cards $\mathrm{n}(\mathrm{S})=52$
No. of King cards $n(A)=4$
No. of Queen cards $n(B)=4$
No. of Jack cards $n(C)=4$
Probability of drawing a King card
$\frac{n(A)}{n(S)}=\frac{4}{52}$
Probability of drawing a Queen card
$=\frac{n(B)}{n(S)}=\frac{4}{52}$
Probability of drawing a Jack card
$=\frac{n(C)}{n(S)}=\frac{4}{52}$
\therefore The Probability of drawing a King or a Queen or a Jack from a deck of cards
$=\mathrm{p}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})=\frac{4}{52}+\frac{4}{52}+\frac{4}{52}=\frac{4+4+4}{52}=\frac{12}{52}=\frac{3}{13}$.
24) Find the mode of the given data: 3.1, 3.2, 3.3, 2.1,1.3, 3.3, 3.1

Answer : 3.1, 3.2, 3.3, 2.1,1.3, 3.3, 3.1
In this given data 3.1, 3.3 occurs twice
\therefore mode $=3.1$ and 3.3 (bimodal)
25) Let A and B be two overlapping sets and the universal set be U. Draw appropriate Venn diagram for each of the following,
(i) AUB
(ii) $A \cap B$
(iii) $(A \cap B)^{\prime}$
(iv) $(\mathrm{B}-\mathrm{A})^{\prime}$
(v) $A^{\prime} U B^{\prime}$
(vi) $A^{\prime} \cap B^{\prime}$
(vii) What do you observe from the Venn diagram (iii) and (v)?

Answer : (i) AUB

(ii) $A \cap B$

(iii) $(A \cap B)^{\prime}$

$(A \cap B)^{\prime}$
(iv) $(\mathrm{B}-\mathrm{A})^{\prime}$

(v) $A^{\prime} \mathrm{UB}^{\prime}$

B^{\prime}

(vi) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

(vii) From the venn diagram (iii) and (v), We have
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Now $\mathrm{B} \cap \mathrm{C}=\left\{\frac{1}{4}, 2, \frac{5}{2}\right\}$
$A \cap(B \cap C)=\left\{\frac{1}{4}, 2\right\}$
Then $A \cap B=\left\{0, \frac{1}{4}, \frac{3}{4}, 2\right\}$
$(A \cap B) \cap C=\left\{\frac{1}{4}, 2\right\}$
From (1) and (2), it is verified that
$(A \cap B) \cap C=A \cap(B \cap C)$
26) Find the $5^{\text {th }}$ root of 243 .

Answer : $\sqrt[5]{243}=243^{\frac{1}{5}}=\left(3^{5}\right)^{\frac{1}{5}}=3^{-5 \times \frac{1}{-5}}=3$
27) Draw the graph for the following
(i) $y=3 x-1$
(ii) $y=\left(\frac{2}{3}\right) x+3$

Answer : (i) Let us prepare a table to find the ordered pairs of points for the line $\mathrm{y}=3 \mathrm{x}-1$.
We shall assume any value for x , for our convenience let us take $-1,0$ and 1 .
When $\mathrm{x}=-1, \mathrm{y}=3(-1)-1=-4$
When $\mathrm{x}=0, \mathrm{y}=3(0)-1=-1$
When $\mathrm{x}=1, \mathrm{y}=3(1)-1=2$

x	-1	0
	1	
y	-4	-1

The points (x, y) to be plotted :
$(-1,-4),(0,-1)$ and $(1,2)$.

(ii) Let us prepare a table to find the ordered pairs of points for the line $\mathrm{y}=\left(\frac{2}{3}\right) x+3$

Let us assume $-3,0,3$ as x values.
(why?)
When $\mathrm{x}=-3, y=\frac{2}{3}(-3)+3=1$
When $\mathrm{x}=0, y=\frac{2}{3}(0)+3=3$
When $\mathrm{x}=3, y=\frac{2}{3}(3)+3=5$
x-303
y 135
The points (x, y) to be plotted: $(-3,1),(0,3)$ and $(3,5)$.

28) In the Figure $A B C D$ is a parallelogram, P and Q are the mid-points of sides $A B$ and $D C$ respectively. Show that APCQ is a parallelogram.

Answer : Since P and Q are the mid points of
AB and DC respectively
Therefore $A P=\frac{1}{2} A B$ and
$Q C=\frac{1}{2} D C$ \qquad (1)

But AB = DC (Opposite sides of a parallelogram are equal)
$\Rightarrow \frac{1}{2} A B=\frac{1}{2} D C$
$\Rightarrow \mathrm{AP}=\mathrm{QC}$
Also, AB || DC
$\Rightarrow \mathrm{AP}|\mid \mathrm{QC}$
(3) $[\because \mathrm{ABCD}$ is a parallelogram $]$

Thus, in quadrilateral APCQ we have AP= QC and AP \| QC [from (2) and (3)]
Hence, quadrilateral APCQ is a parallelogram.
29) Find the coordinates of the point which divides the line segment joining the points $(3,5)$ and $(8,-10)$ internally in the ratio $3: 2$.

Answer : Let $\mathrm{A}(3,5), \mathrm{B}(8,-10)$ be the given points and let the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ divides the line segment AB internally in the ratio $3: 2$.
By section formula,
$\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$
Here $\mathrm{x}_{1}=3, \mathrm{y}_{1}=5, \mathrm{x}_{2}=8, \mathrm{y}_{2}=-10$ and $\mathrm{m}=3, \mathrm{n}=2$
Therefore $\mathrm{P}(\mathrm{x}, \mathrm{y})=\mathrm{P}\left(\frac{3(8)+2(3)}{3+2}, \frac{3(-10)+2(5)}{3+2}\right)=\mathrm{P}(6,-4)$
30) The Median of the following data is 24 . Find the value of x .

CLASS INTERVAL	$0-$	$10-$	$20-$	$30-$	$40-$
(CI)	10	20	30	40	50
FREQUENCY (F)	6	24	x	16	9

Answer :

CLASS INTERVAL FREQUENCY CUMULATIVE

(CI)		(F)
$0-10$	6	FREQUENCY (CF)
$10-20$	24	6
$20-30$	x	30
$30-40$	16	$30+\mathrm{x}$
$40-50$	9	$46+\mathrm{x}$
	$\mathrm{N}=55+\mathrm{x}$	$55+\mathrm{x}$

Since the median is 24 and median class is $20-30$
$1=20 \mathrm{~N}=55+\mathrm{x}, \mathrm{m}=30, \mathrm{c}=10, \mathrm{f}=\mathrm{x}$
Median $=l+\frac{\left(\frac{N}{2}-m\right)}{f} \times c$
$24=20+\frac{\left(\frac{55+x}{2}-3\right)}{x} \times 10$
$4=\frac{5 x-25}{x}$ (after simplification)
$4 \mathrm{x}=5 \mathrm{x}-25$
$5 \mathrm{x}-4 \mathrm{x}=25$
$\mathrm{x}=25$
31) Find the value of the following:
$\frac{\cot \theta}{\tan \left(90^{\circ}-\theta\right)}+\frac{\cos \left(90^{\circ}-\theta\right) \tan \theta \sec \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}-\theta\right) \operatorname{cosec}\left(90^{\circ}-\theta\right)}$
Answer : $\frac{\cot \theta}{\tan \left(90^{\circ}-\theta\right)}+\frac{\cos \left(90^{\circ}-\theta\right) \tan \theta \sec \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}-\theta\right) \operatorname{cosec}\left(90^{\circ}-\theta\right)}$
$=\frac{\cot \theta}{\cot \theta}+\frac{\cos (90-\theta) \cdot \tan \theta \cdot \operatorname{cosec} \theta}{\cos \theta \cdot \tan \theta \cdot \sec \theta}$
$=1+\frac{\sin \theta}{\cos \theta} \cdot\left(\frac{1}{\sin \theta} / \frac{1}{\cos \theta}\right)=1+\frac{\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta} \times \frac{\cos \theta}{1}}{1}=2$
32) A farmer has a field in the shape of a rhombus. The perimeter of the field is 400 m and one of its diagonal is 120 m . He wants to divide the field into two equal parts to grow two different types of vegetables. Find the area of the field.

Answer : Let ABCD be the rhombus.
Its perimeter $=4 \times$ side $=400 \mathrm{~m}$
Therefore, each side of the rhombus $=100 \mathrm{~m}$ Given the length of the diagonal $\mathrm{AC}=120 \mathrm{~m}$
In $\triangle \mathrm{ABC}$, let $\mathrm{a}=100 \mathrm{~m}, \mathrm{~b}=100 \mathrm{~m}, \mathrm{c}=120 \mathrm{~m}$

$\mathrm{s}=\frac{a+b+c}{2}=\frac{100+100+120}{2}=160 \mathrm{~m}$
Area of $\triangle \mathrm{ABC}=\sqrt{160(160-100)(160-100)(160-120)}$
$=\sqrt{160 \times 60 \times 60 \times 40}$
$=\sqrt{40 \times 2 \times \times 2 \times 60 \times 60 \times 40}$
$=40 \times 2 \times 60=4800 \mathrm{~m}^{2}$
Therefore, Area of the field $\mathrm{ABCD}=2 \times$ Area of $\triangle \mathrm{ABC}=2 \times 4800=9600 \mathrm{~m}^{2}$
33) In what ratio does the point $P(-2,3)$ divide the line segment joining the points $A(-3,5), B(4,-9)$ internally?

Answer : Given points are A $(-3,5)$ and B $(4,-9)$
Let $\mathrm{P}(-2,3)$ divide AB internally in the ratio $1: \mathrm{m}$
By the section formula
$\mathrm{P}\left(\frac{l x_{2}+\mathrm{m} x_{1}}{l+\mathrm{m}}, \frac{l y_{2}+\mathrm{my}}{l+\mathrm{m}}\right)=\mathrm{P}(-2,3)$
$\xrightarrow[\mathrm{A}(-3,5)]{\stackrel{l}{\mathrm{P}}} \stackrel{\mathrm{P}(-2,3)}{\mathrm{m}} \mathrm{B}(4,-9)$

$$
x_{1}=-3 ; y_{1}=5 ; x_{2}=4 ; y_{2}=-9
$$

$\left(\frac{l(4)+\mathrm{m}(-3)}{l+\mathrm{m}}, \frac{l(-9)+\mathrm{m}(5)}{l+\mathrm{m}}\right)=(-2,3)$
Equating the x coordinates we get
$\frac{4 l-3 \mathrm{~m}}{l+\mathrm{m}}=-2$
$61=\mathrm{m}$
$\frac{l}{\mathrm{~m}}=\frac{1}{6}$
1:m=1:6
Hence P divides $A B$ internally in the ratio $1: 6$
34) How many hollow blocks of sixe $30 \mathrm{~cm} \times 15 \mathrm{~cm} \times 20 \mathrm{~cm}$ are needed to construct a wall 60 m in length, 0.3 m in breadth and 2 m in height.

Answer : Dimensions of hollow blocks are $30 \mathrm{~cm}, 15 \mathrm{~cm}, 20 \mathrm{~cm}=0.30 \mathrm{~m}, 0.15 \mathrm{~m}, 0.20 \mathrm{~m}$
Dimensions of the wall are $60 \mathrm{~m}, 0.3 \mathrm{~m}, 2 \mathrm{~m}$
No of hollow blocks needed to constant a wall
$=\frac{\text { Volume of wall }}{\text { Vol }}$
$-\frac{\text { Volume of blocks }}{60 \times 0.30 \times 2}$
$=\frac{60 \times 0.30 \times 2}{0.30 \times 0.15 \times 0.20}$
$=\frac{120}{0.03}=4000$

SECTION D

35) Draw an equilateral triangle of side 6.5 cm and locate its incentre. Also draw the incircle.

Answer :

Construction :

Step 1: Draw $\triangle A B C$ with $A B=B C=C A=6.5 \mathrm{~cm}$
Step 2: Construct angle bisectors of any two angles (A and B) and let them meet at I. I is the incentre of $\triangle A B C$.
Step 3: Draw perpendicular from I to any one of the side $(A B)$ to meet $A B$ at D.
Step 4: With I as centre, ID as radius draw the circle. This circle touches all the sides of triangle internally.
Step 5: Measure in radius. In radius $=1.9 \mathrm{~cm}$.
36) Find the product of
(i) $(\mathrm{x}+2)(\mathrm{x}+5)(\mathrm{x}+7)$
(ii) $(a-3)(a-5)(a-7)$
(iii) $(2 a-5)(2 a+5)(2-3)$

Answer: $(x+2)(x+5)(x+7)$
$\left.=x^{3}+(2+5+7) x^{2}+(2)(5)+(5)(7)+(7)(2)\right] x+2(5)(7)$
$=x^{3}+14 x^{2}+(10+35+14) x+70$
$=x^{3}+14 x^{2}+59 x+70$
(ii) $(a-3)(a-5)(a-7)$
$=[a+(-3)][a+(-5)][a+(-7)]$
$=a^{3}+(-3-5-7) a^{2}+[(-3)(-5)+(-5)(-7)+(-7)(-3) a+(-3)](-5)(-7)$
$=a^{3}-15 a^{2}+(15+35+21) a-105$
$=a^{3}-15 a^{2}+71 a-105$
(iii) $(2 a-5)(2 a+5)(2-3)$
$=[2 a+(-5)](2 a+5)[2 a+(-3)]$
$=(2 a)^{3}+(-5+5-3)(2 a)^{2}+[-5(5)+5(-3)+(-3)(-5)](2 a)+(-5)(5)(-3)$
$=8 a^{3}+(-3) 4 a^{2}+(-25-15+15) 2 a+75$
$=8 a^{3}-12 a^{2}-50 a+75$

