QB365 QUESTION BANK SOFTWARE
 QB365 MODEL HALF YEARLY QUESTION WITH ANSWER KEY 2024

8th Standard

Maths
Time : 03:00:00 Hrs
Total Marks : 100

I. CHOOSE THE CORRECT ANSWER

1) $\sqrt{128}-\sqrt{98}+\sqrt{18}=$
(a) $\sqrt{2}$
(b) $\sqrt{8}$
(c) $\sqrt{48}$
(d) $\sqrt{32}$
2) If the area of a square is $36 x^{4} y^{2}$ then, its side is \qquad
(a) $6 x^{4} y^{2}$
(b) $8 x^{2} y^{2}$
(c) $6 x^{2} y^{2}$
(d) $6 x^{2} y$
3) If $x^{2}-y^{2}=16$ and $(x+y)=8$ then $(x-y)$ is \qquad
(a) 8
(b) 3
(c) 2
(d) 1
4) The area of a rectangle of length 21 cm and diagonal 29 cm is \qquad cm^{2}.
(a) 609
(b) 580
(c) 420
(d) 210
5) Common prime factors of 30 and 250 are
(a) 2×5
(b) 3×5
(c) $2 \times 3 \times 5$
(d) 5×5
6) The sum which amounts to Rs. 2662 at 10% p.a in 3 years compounded yearly is \qquad .
(a) Rs. 2000
(b) Rs. 1800
(c) Rs. 1500
(d) Rs. 2500
7) Sum of a number and its half is 30 then the number is \qquad .
(a) 15
(b) 20
(c) 25
(d) 40

II. FILL IN THE BLANKS:

8) The number of perfect square numbers between 300 and 500 is \qquad

5

9) $(-2)^{-7}=$ \qquad

1/128

10) The radius of a circle of diameter 24 cm is \qquad .

12 cm

11) The intersecting point of the line $x=4$ and $y=-4$ is \qquad .

(4,-4)

12) If the sides of a triangle are in the ratio 5: 12: 13 then, it is \qquad .

right angled triangle

13) The compound interest on Rs. 5000 at 12% p.a for 2 years compounded annually is
\qquad .

1272

14) A alone can do a piece of work in 35 days. If B is 40% more efficient than A, then B will finish the work in \qquad days.
15) $27 y^{3} \div 3 y=$ \qquad

$$
(p+2)^{2}=p^{2}+2(P)(2)+2^{2}=p^{2}+4 p+4
$$

III. SOLVE ANY 15 OF THE FOLLOWING:
16) Simplify: $\left(3^{2}\right)^{3} \times\left(2 \times 3^{5}\right)^{-2} \times(18)^{2}$

Answer: $\left(3^{2}\right)^{3} \times\left(2 \times 3^{5}\right)^{-2} \times(2 \times 3 \times 3)^{2}$
$=36 \times 2^{-2} \times 3^{-10} \times\left(2 \times 3^{2}\right)^{2}$
$=36 \times 2^{-2} \times 3^{-10} \times 2^{2} \times 3^{4}$
$=2^{2} \times 2^{-2} \times 3^{6} \times 3^{4} \times 3^{-10}$
$=2^{2-2} \times 3^{6+4-10}$
$=2^{0} \times 3^{0}$
$=1 \times 1=1$
17) Solve for x
$\frac{5^{5} \times 5^{-4} \times 5^{x}}{5^{12}}=5^{-5}$
Answer : $\frac{5^{5} \times 5^{-4} \times 5^{x}}{5^{12}}=5^{-5}$
$5^{5} \times 5^{-4} \times 5^{x} \times 5^{-12}=5^{-5}$
$5^{5-4-12+x}=5^{-5}$
$5^{-11+x}=5^{-5}$
The bases are equal
Equate the exponents

$$
\begin{aligned}
& -11+x=-5 \\
& x=-5+11=6 \\
& x=6
\end{aligned}
$$

18) Find x : (i) $-3(4 x+9)=21$
(ii) $20-2(5-\mathrm{p})=8$
(iii) $(7 x-5)-4(2+5 x)=10(2-x)$

Answer : (i) $x=-4$
(ii) $\mathrm{p}=-1$
(iii) $x=-11$
19) The sum of three consecutive odd numbers is 75 . Find the numbers.

Answer : 27
20) At present, Thenmozhi's age is 5 years more than that of Murali's age. Five years ago, the ratio of Thenmozhi's age to Murali's age was 3:2. Find their present ages.
Answer : Murali's age is 15 years old, Thenmozhi's age is 20 years old
21) Find the quadrants without plotting the points on a graph sheet.
$(-7,2),(8,0),(0,10),(-9,50)$.
Answer : (3, - 4) lies in the IV quadrant
$(5,7)$ lies in the I quadrant
$(2,0)$ lies on the X axis
$(-3,-5)$ lies in the III quadrant
$(4,-3)$ lies in the IV quadrant
$(-7,2)$ lies in the II quadrant
$(-8,0)$ lies on the X axis
$(0,10)$ lies on the Y axis
$(-9,50)$ lies in the II quadrant
22) Find the distance between the helicopter and the ship.

Answer : From the figure
$\mathrm{d}^{2}=80^{2}+150^{2}$
$=6400+22500$
$\mathrm{d}^{2}=28900$
d $=170$
The distance between the helicopter and the ship is 170 m .
23) In the given figure, A is the midpoint of $Y Z$ and G is the centroid of the triangle $X Y Z$. If the length of GA is 3 cm , find XA.

Answer : Since G is the centroid of the triangle XYZ
So,XG: GA $=2: 1$

$$
\begin{aligned}
& \frac{\mathrm{XG}}{\mathrm{GA}}=\frac{2}{1} \\
& \frac{\mathrm{XG}}{3}=\frac{2}{1}(\text { given } G A=3) \\
& \mathrm{XG}=6 \\
& \mathrm{XA}=\mathrm{XG}+\mathrm{GA} \\
& =6+3=9 \mathrm{~cm}
\end{aligned}
$$

24) Write in scientific notation:
(i) 1642.398
(ii) 0.0123

Answer : (i) Scientific notation, 1.083×1012 cubic km.
(ii) Scientific notation $1.6 \times 10^{-24} \mathrm{~kg}$.
25) State Pythagoras theorem.

Answer : $535.71 \mathrm{~cm}^{2}$
26) Find the length of the arc whose central angle is 45° and radius is 16 cm .

Answer : Length of arc $=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r$ units
Given central angle $\theta=60^{\circ}$
Radius of the sector $\mathrm{r}=42 \mathrm{~cm}$
$1=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 42 \mathrm{~cm}=44 \mathrm{~cm}$
\therefore Length of the arc $=44 \mathrm{~cm}$
27) Find the area of the shaded part in the following figures. $(\pi=3.14)$

Answer : From the figure, radius $=7 \mathrm{~cm}$
diameter $=14 \mathrm{~cm}$
Area of the shaded part = Area of the semicircle - Area of the triangle
$=\frac{1}{2} \pi r^{2}-\frac{1}{2} b h$
$=\frac{1}{2} 3.14 \times 7 \times 7-\frac{1}{2} \times 14 \times 7$
$=76.93-49=27.93 \mathrm{~cm}^{2}$
28) Find the area of a sector whose length of the arc is 48 m and radius is 10 m .

Answer : Length of the arc of the sector $1=50 \mathrm{~mm}$
Radius $\mathrm{r}=14 \mathrm{~mm}$
Area of the sector $=\frac{l r}{2}$ sq. units
$=\frac{50 \times 14}{2} \mathrm{~mm}^{2}=50 \times 7 \mathrm{~mm}^{2}=350 \mathrm{~mm}^{2}$
Area of the sector $=350 \mathrm{~mm}^{2}$
29) Expand $(2 n-1)(2 n+3)$

Answer: $(x+a)(x+b)=x^{2}(a+b) x+a b$
$\left(2 \mathrm{n}+(-1)(2 \mathrm{n}+3)=(2 \mathrm{n})^{2}+(-1+3) 2 \mathrm{n}+(-1)(3)\right.$
$=2^{2} n^{2}+2(2 n)-3=4 n^{2}+4 n-3$
30) Factorise: $c^{2}-4 c-12$

Answer :

Product
-4
-4
$-6+2(-6) \times 2$
Sum
$=c\left(c-4 c-12=c^{2}+2(2)+2(c-6)\right.$
$=(c+2)(c-6)$

31) Find the compound interest on Rs. 3200 at 2.5% p.a for 2 years, compounded annually.

Answer : $\mathrm{P}=$ Rs. $3200, \mathrm{r}=2.5 \% \mathrm{n}=2$ years
C.I $=P\left(1+\frac{r}{100}\right)^{n}-P$
$=3200\left(1+\frac{2.5}{100}\right)^{2}-3200$
$=3200\left(\frac{102.5}{100}\right)^{2}-3200$
$=32 \times \frac{1025}{100} \times \frac{1025}{100}-3200$
$=32 \times \frac{41}{4} \times \frac{41}{4}-3200$
$=2 \times 41 \times 41-3200$
$=3362-3200$
$=162$
32) A and B together can do a piece of work in 16 days. A alone can do it 48 days. How long will B take to complete the work?

Answer : $(A+C)$'s 1 day work $=\frac{1}{6}$
A's 1 day work $=\frac{1}{12}$
C's 1 day work $=\frac{1}{6}-\frac{1}{12}=\frac{2-1}{12}=\frac{1}{12}$
$(B+C)$'s 1 day work $=\frac{1}{3}$
B's Iday work $=\frac{1}{3}-\frac{1}{12}=\frac{4-1}{12}=\frac{3}{12}=\frac{1}{4}$
B alone can complete the work in 4 hours.
33) A is thrice as fast as B. If B can do a piece of work in 24 days, then find the number of days they will take to complete the work together

Answer : A is thrice as fast as B.
B takes 24 days to finish the work
\therefore A takes $\frac{1}{3} \times 24=8$ days to finish the work.
A's 1 day's work $=\frac{1}{8}$
B's 1 day's work $=\frac{1}{24}$
$\therefore(\mathrm{A}+\mathrm{B})$'s 1 day's work $=\frac{1}{8}+\frac{1}{24}$
$=\frac{3+1}{24}$
$=\frac{4}{24}=\frac{1}{6}$
Both A and B will take 6 days to complete the work together
34) Check whether the given sides are sides of a right angled triangle using Pythagoras theorem. 12, 13, 15

Answer :

STEPS:
(i) Draw a line segment $\mathrm{LA}=8 \mathrm{~cm}$.
(ii) At L, Construct LD \perp LA
(iii) With A as centre, draw an arc of radius 10 cm and let it cut LX at D..
(iv) With A as centre and 6 cm as radius draw an arc. Also with D as centre 8 cm as radius draw another arc let them cut at N .
(v) Join DN and AN.
(vi) LAND is the required rectangle

Calculation of area
Area of rectangle HAND $=\mathrm{I} \times \mathrm{b}$ sq units.
$=8 \times 6=48 \mathrm{~cm}^{2}$.

IV. SOLVE ANY 8 OF THE FOLLOWING:

35) Find the square root by prime factorisation method
(i) 1156
(ii) 4761
(iii) 9025

Answer :
$\sqrt{1156}=2 \times 2 \times 17 \times 17$
$=2^{2} \times 17^{2}$
$=(2 \times 17)^{2}$
$\sqrt{1156}=\sqrt{(2 \times 17)^{2}}$
$=2 \times 17$
$=34$
$\sqrt{1156}=34$
(ii) 4761

$\sqrt{4761}=3 \times 3 \times 23 \times 23$
$=3^{2} \times 23^{2}$
$\sqrt{4761}=\sqrt{(3 \times 23)^{2}}$
$=3 \times 23$
$=69$
$\sqrt{4761}=69$
(iii) 9025

5	9025
5	1805
19	361
19	19
	1

$\sqrt{9025}=5 \times 5 \times 19 \times 19$
$=5^{2} \times 19^{2}$
$=(5 \times 19)^{2}$
$\sqrt{9025}=\sqrt{(5 \times 19)^{2}}$
$=5 \times 19$
$=95$
$\sqrt{9025}=95$
v. GEOMETRY
$7 \times 5=35$
36) Verify the associative property for addition and multiplication of the rational numbers $\frac{-7}{9}, \frac{5}{6}, \frac{-4}{3}$

Answer : Let $\mathrm{a}=\frac{-10}{11}, b=\frac{5}{6}$ and $\mathrm{c}=\frac{-4}{3}$ be the given rational numbers
$(a+b)+c=\left(\frac{-10}{11}+\frac{5}{6}\right)+\left(\frac{-4}{3}\right)=\left(\frac{(-10 \times 6)+(5 \times 11)}{66}\right)+\left(\frac{-4}{3}\right)$
$=\frac{-66+55}{66}+\left(\frac{-4}{3}\right)$
$=\left(\frac{-5}{66}\right)+\left(\frac{-4}{3}\right)=\frac{-5+(-4 \times 22)}{66}$
$=\frac{-5+(-88)}{66}=\frac{-93}{66}$
$(a+b)+c=\frac{-31}{22}$
Also $a+(b+c)=\frac{-10}{11}+\left(\frac{5}{6}+\left(\frac{-4}{3}\right)\right)=\frac{-10}{11}+\left(\frac{5+(-4 \times 2)}{6}\right)$
$=\frac{-10}{11}+\left(\frac{5+(-8)}{6}\right)=\frac{-10}{11}+\left(\frac{-3}{6}\right)$
$=\frac{(-10 \times 6)+(-3) \times-11}{66}=\frac{-60+(-33)}{66}=\frac{-93}{66}$
$a+(b+c)=\frac{-31}{22}$
From (1)and (2), $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$ is true for rational numbers.
Now (axb) $x c=\left(\frac{-10}{11} \times \frac{5}{6}\right) \times \frac{-4}{3}=\frac{-50}{66} \times\left(\frac{-4}{3}\right)=\frac{-50 \times\left(-A^{2}\right)}{\frac{63}{63}}$
$(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\frac{100}{99} \quad \ldots . .(1)$
$a \times(b \times c)=\frac{-10}{11} \times\left(\frac{5}{6} \times\left(\frac{-4}{3}\right)\right)=\frac{-10}{11} \times\left(\frac{-20}{18}\right)$
$=\frac{-10}{11} \times\left(\frac{-10}{9}\right)$
$a \times(b \times c)=\frac{100}{99}$
From (1) and (2) $\mathrm{a} \times(\mathrm{b} \times \mathrm{c})=(\mathrm{axb}) \mathrm{x} \mathrm{c}$ is true for rational numbers.
Thus associative property is true for addition and multiplication of rational numbers.
37) Find the perimeter and area of the given Figure. $\left(\pi=\frac{22}{7}\right)$

Answer : Radius of a circular quadrant, $\mathrm{r}=3.5 \mathrm{~cm}$ and side of a square, $\mathrm{a}=3.5 \mathrm{~cm}$. The given figure is formed by the joining of 4 quadrants of a circle with each side of a square. The boundary of the given figure consists of 4 arcs and 4 radii.
(i) Perimeter of the given combined shape
$=4 \mathrm{x}$ length of the arcs of the quadrant of a circle +4 x radius
$=\left(4 \times \frac{1}{4} \times 2 \pi r\right)+4 r$
$=\left(4 \times \frac{1}{4} \times 2 \times 3.5\right)+(1 \times 3.5)$
$=22+14=36 \mathrm{~cm}$ (approximately)
(ii) Area of the given combined shape
$=$ area of the square +4 x area of the quadrants of the circle
$a^{2}=\left(4 \times \frac{1}{4} \times \pi r^{2}\right)$
$=(3.5 \times 3.5)+\left(\frac{22}{7} \times 3.5 \times 3.5\right)$
$\mathrm{A}=12.25+38.5=50.75 \mathrm{~cm}^{2}$ (approximately)
38) Factorise: $4 x^{2} y+8 x y$

Answer: We have, $4 x^{2} y+8 x y$
This can be written as = ($2 \mathrm{x} 2 \mathrm{XxX} \times \mathrm{y})+(2 \mathrm{X} 2 \mathrm{XxX} \mathrm{y})$
Taking out the common factor $2,2, x, y$, we get
$=2 \times 2 \mathrm{XxXy}(\mathrm{x}+2)$
$=4 x y(x+2)$
$=4 x y(x+2)$
39) Draw straight lines by joining the points $A(2,5) B(-5,-2) M(-5,4) N(1,-2)$ also find the point of intersection
Answer : Plot the first pair of points A and B in I and III quadrants. Join the points and extend it to get AB straight line. Plot the second pair of points M and N in II and IV quadrants. Join the points and extend it to get MN straight line.

Now, both lines are intersect at $\mathrm{P}(-2,1)$
(i) The line $A B$ intersect the coordinate axis, ie) x-axis at $R(-3,0)$ and y-axis at $Q(0,3)$
(ii) The line MN intersect the coordinate axis, ie) x-axis at $S(-1,0)$ and y-axis at $T(0,-1)$
40) Draw the graph of $x=5$

Answer : x = 5 means that x -coordinate is always 5 for whatever value of y -coordinate.
So we may
give any value for y -coordinate and this is tabulated as follows

x	5	5	5	5
y	-2	-1	0	1

$\mathrm{x}=5$ is given (fixed)
Take any value for y (Why?)

The points are $(5,-2)(5,-2)(5,0)(5,2)(5,3)$. Plot the points in the graph and join them.We get a straight line parallel to Y axis at a distance of 5 units from the Y axis.
41) Construct a quadrilateral MATH with $\mathrm{MA}=4 \mathrm{~cm}, \mathrm{AT}=3.6 \mathrm{~cm}, \mathrm{TH}=4.5 \mathrm{~cm}, \mathrm{MH}=5 \mathrm{~cm}$ and $\angle \mathrm{A}=85^{\circ}$. Also find its area.

Answer : Given:
$\mathrm{MA}=4 \mathrm{~cm}, \mathrm{AT}=3.6 \mathrm{~cm}$,
$\mathrm{TH}=4.5 \mathrm{~cm}, \mathrm{MH}=5 \mathrm{~cm}$ and $\angle \mathrm{A}=85^{\circ}$

Steps:

1. Draw a line segment $\mathrm{MA}=4 \mathrm{~cm}$.
2. Make $\angle A=85^{\circ}$.
3. With A as centre, draw an arc of radius 3.6 cm . Let it cut the ray AX at T.
4. With M and T as centres, draw arcs of radii 5 cm and 4.5 cm respectively and let them cut at H .
5. Join MH and TH.
6. MATH is the required quadrilateral.

Calculation of Area:
Area of the quadrilateral MATH $=\frac{1}{2} \times \mathrm{d} \times\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)$ sq.units
$=\frac{1}{2} \times 5.1 \times(3.9+2.8)$
$=2.55 \times 6.7=17.09 \mathrm{~cm}^{2}$
42) Construct a rhombus LEAF with $L E=6 \mathrm{~cm}$ and $\angle \mathrm{L}=65^{\circ}$. Also find its area

Answer : Given: $\mathrm{KE}=6 \mathrm{~cm}$ and $\angle \mathrm{L}=65^{\circ}$

(i) Draw a line segment $\mathrm{LE}=6 \mathrm{~cm}$.
(ii) At L on $L E$, make $\angle E L X=65^{\circ}$
(iii) With L as centre draw an arc of radius 6 cm . Let it cut LX at F.
(iv) With E and F as centres, draw arcs of radius 6 cm each and let them cut at A.
(v) Join EA and AF.
(vi) LEAF is the required rhombus

Calculation of area:
Area of rhombus LEAF $=\frac{1}{2} \times d_{1} \times d_{2}$ sq. units
$=\frac{1}{2} \times 6.4 \times 10.2=32.64 \mathrm{sq} . \mathrm{cm}$
43) What is the square root of cube root of 46656 ?

Answer :

$\sqrt[3]{46656}=\sqrt[3]{2^{6} \times 3^{6}}=\left(2^{6} \times 3^{6}\right)^{1 / 3}$
$=2^{2} \times 3^{2}$
Square root of $2^{2} \times 3^{2}$ is $\sqrt{2^{2} \times 3^{2}}$
$=\left(2^{2} \times 3^{2}\right)^{1 / 6}$
$=2 \times 3=6$
The square root of cube root of 46656 is 6 .

