QB365 Question Bank Software

10th Maths Important Questions with Answer Keys For - 2024
10th Standard

Maths

Total Marks : 50

CHOOSE THE CORRECT ANSWER:

1) $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
(a) 8
(b) 20
(c) 12
(d) 16
2) The range of the relation $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is
(a) $\{2,3,5,7\}$
(b) $\{2,3,5,7,11\}$
(c) $\{4,9,25,49,121\}$
(d) $\{1,4,9,25,49,121\}$
$3)$ If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
(a) $(2,-2)$
(b) $(5,1)$
(c) $(2,3)$
(d) $(3,-2)$
3) Let f and g be two functions given by
$\mathrm{f}=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f o g$ is
(a) $\{0,2,3,4,5\}$
(b) $\{-4,1,0,2,7\}$
(c) $\{1,2,3,4,5\}$
(d) $\{0,1,2\}$
4) If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are
(a) $(-1,2)$
(b) $(2,-1)$
(c) $(-1,-2)$
(d) $(1,2)$
5) Given $\mathrm{F}_{1}=1, \mathrm{~F}_{2}=3$ and $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$ then F_{5} is
(a) 3
(b) 5
(c) 8
(d) 11
6) In an A.P., the first term is 1 and the common difference is 4 . How many terms of the A.P. must be taken for their sum to be equal to 120 ?
(a) 6
(b) 7
(c) 8
(d) 9
7) The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
(a) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(b) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(c) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(d) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
8) In a $\triangle \mathrm{ABC}, \mathrm{AD}$ is the bisector $\angle \mathrm{BAC}$. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$. The length of the side AC is
(a) 6 cm
(b) 4 cm
(c) 3 cm
(d) 8 cm
9) In the adjacent figure $\angle B A C=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$ then

(a) $\mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2}$
(b) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(c) $\mathrm{BD} . \mathrm{CD}=\mathrm{AD}^{2}$
(d) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{AD}^{2}$
10) A tangent is perpendicular to the radius at the
(a) centre
(b) point of contact
(c) infinity
(d) chord
11) In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle P Q R$ is

(a) $\mathbf{1 2 0}^{\mathbf{0}}$
(b) 100°
(c) 110°
(d) 90°
12) The point of intersection of $3 x-y=4$ and $x+y=8$ is
(a) $(5,3)$
(b) $(2,4)$
(c) $(3,5)$
(d) $(4,4)$
13) If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then slope of the perpendicular bisector of $P Q$ is
(a) $\sqrt{\overline{3}}$
(b) $-\sqrt{\overline{3}}$
(c) $\frac{1}{\sqrt{3}}$
(d) 0
14) Consider four straight lines
(i) $1_{1}: 3 y=4 x+5$
(ii) $1_{2}: 4 y=3 x-1$
(iii) $l_{3}: 4 y+3 x=7$
(iv) $l_{4}: 4 x+3 y=2$

Which of the following statement is true?
(a) 1_{1} and l_{2} are perpendicular
(b) 1_{1} and 1_{4} are parallel
(c) l_{2} and l_{4} are perpendicular
(d) l_{2} and l_{3} are parallel
16) A straight line has equation $8 y=4 x+21$. Which of the following is true
(a) The slope is $\mathbf{0 . 5}$ and the \mathbf{y} intercept is 2.6
(b) The slope is 5 and the y intercept is 1.6
(c) The slope is 0.5 and the y intercept is 1.6
(d) The slope is 5 and the y intercept is 2.6
17) $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
(a) $\sec \theta$
(b) $\cot ^{2} \theta$
(c) $\sin \theta$
(d) $\cot \theta$
18) If $\sin \theta+\cos \theta=\mathrm{a}$ and $\sec \theta+\operatorname{cosec} \theta=\mathrm{b}$, then the value of $\mathrm{b}\left(\mathrm{a}^{2}-1\right)$ is equal to
(a) 2 a
(b) 3 a
(c) 0
(d) 2 ab
19) $\mathrm{a} \cot \theta+\mathrm{b} \operatorname{cosec} \theta=\mathrm{p}$ and $\mathrm{b} \cot \theta+\mathrm{a} \operatorname{cosec} \theta=\mathrm{q}$ then $\mathrm{p}^{2}-\mathrm{q}^{2}$ is equal to
(a) $a^{2}-b^{2}$
(b) $b^{2}-a^{2}$
(c) $a^{2}+b^{2}$
(d) $\mathrm{b}-\mathrm{a}$
20) The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is
(a) $20,10 \sqrt{3}$
(b) $30,5 \sqrt{3}$
(c) 20,10
(d) $30,10 \sqrt{3}$
21) If the radius of the base of a cone is tripled and the height is doubled then the volume is
(a) made 6 times
(b) made 18 times
(c) made 12 times
(d) unchanged
22) The height and radius of the cone of which the frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is
(a) $1: 3$
(b) $1: 2$
(c) $2: 1$
(d) $3: 1$
23) The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all observations is
(a) 40000
(b) 160900
(c) 160000
(d) 30000
24) The standard deviation of a data is 3 . If each value is multiplied by 5 then the new variance is
(a) 3
(b) 15
(c) 5
(d) 225
25) A purse contains 10 notes of Rs. 2000, 15 notes of Rs. 500 , and 25 notes of Rs. 200 . One note is drawn at random. What is the probability that the note is either a Rs. 500 note or Rs. 200 note?
(a) $\frac{1}{5}$
(b) $\frac{3}{10}$
(c) $\frac{2}{3}$
(d) $\frac{4}{5}$
26) $\left(x-\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$ then $\mathrm{f}(\mathrm{x})=$
(a) $\mathrm{x}^{2}+2$
(b) $x^{2}+\frac{1}{x^{2}}$
(c) $x^{2}-2$
(d) $x^{2}-\frac{1}{x^{2}}$
27) A function is also called as a \qquad
(a) mapping
(b) transformation
(c) both a and b
(d) none of these
28) If $n(A)=p ; n(B)=q$; then the total number of relations that exist between A and B is \qquad
(a) 2^{p}
(b) 2^{q}
(c) 2^{p+q}
(d) 2^{pq}
29) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any three sets, then $A \times(\dot{B} \cup C)$ is equal to \qquad
(a) $(A \times B) \cup(A \times C)$
(b) $(A \cup B) \cup(A \cup C)$
(c) Both (a) and (b)
(d) None of these
30) Given $\mathrm{a}_{1}=-1, a=\frac{a_{n}}{n+2}$, then a_{4} is \qquad
(a) $-\frac{1}{20}$
(b) $-\frac{1}{4}$
(c) $-\frac{1}{840}$
(d) $-\frac{1}{120}$
31) A Quadratic polynomial whose one zero is 5 and sum of the zeroes is 0 is given by \qquad
(a) $\mathrm{x}^{2}-25$
(b) $x^{2}-5$
(c) $x^{2}-5 x$
(d) $x^{2}-5 x+5$
32) If P and Q are matrices, then which of the following is true?
(a) $\mathbf{P Q} \neq \mathrm{QP}$
(b) $\left(\mathrm{P}^{\mathrm{T}}\right)^{\mathrm{T}} \neq \mathrm{P}$
(c) $\mathrm{P}+\mathrm{Q} \neq \mathrm{Q}+\mathrm{P}$
(d) All are true
${ }^{33)}$ solve for $x:\left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2$
(a) 4
(b) 8
(c) -4
(d) -8
34) The LCM of $8 x^{4} y^{2} z^{3}, 10 x y^{3} z^{5}$ and $12 x^{2} y^{2} z^{4}$ is
(a) $120 x^{2} y^{2} z^{2}$
(b) $120 x^{4} y^{3} z^{5}$
(c) $2 x y^{2} z^{3}$
(d) $120 x^{3} y^{3} z^{5}$
35) Common root of $x^{2}+x-6=0$ and $x^{2}+3 x-10=0$ is \qquad
(a) -2
(b) 2
(c) -3
(d) -5
${ }^{36)}$ For the given matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ the order of the matri $x\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}}$ is
(a) 2×3
(b) 3×2
(c) 3×4
(d) 4×3
37) The height of an equilateral triangle of side a is
(a) $\frac{a}{2} \mathrm{~cm}$
(b) $\sqrt{3 a}$
(c) $\frac{\sqrt{3}}{2} a$
(d) $\frac{\sqrt{3}}{4} a$
38) If the angle between two radio of a circle is ${ }^{\circ}$, the angle between the tangents at the end of the radii is \qquad
(a) 50°
(b) 90°
(c) 40°
(d) 70°
39) In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.
(a) right angle
(b) equilateral
(c) scalene
(d) isosceles
$40)$ If the points $(0,0),(a, 0)$ and $(0, b)$ are colllinear, then \qquad
(a) $a=b$
(b) $a+b$
(c) $\mathbf{a b}=0$
(d) $a \neq b$
41) The angle of elevation of a cloud from a point h metres above a lake is b. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is \qquad
(a) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
(b) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
(c) $\mathrm{h} \tan \left(45^{\circ}-\beta\right)$
(d) None of these
42) If $\tan \theta+\cot \theta=3$ then $\tan ^{2} \theta+\cot ^{2} \theta$ is equal to \qquad
(a) 4
(b) 7
(c) 6
(d) 9
43) From a given point when height of an object increases the angle of elevation \qquad
(a) increases
(b) decreases
(c) neither increases nor decreases
(d) equal
44) If the angle of elevation of a tower from a distance of 100 m from its foot is 60°, then the height of the tower is \qquad
(a) $100 \sqrt{ } \overline{3} m$
(b) $\frac{100}{\sqrt{3}} m$
(c) $50 \sqrt{3} m$
(d) $\frac{200}{\sqrt{3}} m$
45) The angle of elevation of the top of tree from a point at a distance of 250 m from its base is 60° The height of the tree is
(a) 250 m
(b) $250 \sqrt{3} \mathrm{~m}$
(c) $\frac{250}{\sqrt{3}} \mathrm{~m}$
(d) $200 \sqrt{3} \mathrm{~m}$
46) A cylinder 10 cone and have there are of a equal base and have the same height. what is the ratio of there volumes?
(a) $3: 1: 2$
(b) $3: 2: 1$
(c) $1: 2: 3$
(d) 1:3:2
47) The volume of a frustum if a cone of height L and ends-radio and r_{1} and r_{2} is \qquad
(a) $\frac{1}{3} \pi \mathrm{~h} 1\left(\mathbf{r}_{1}{ }^{2}+\mathbf{r}_{\mathbf{2}}{ }^{\mathbf{2}}+\mathrm{r}_{1} \mathbf{r}_{2}\right)$
(b) $\frac{1}{3} \pi h\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{r}_{1} \mathrm{r}_{2}\right)$
(c) $\pi \mathrm{h}\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
(d) $\pi \mathrm{h}\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}-\mathrm{r}_{1} \mathrm{r}_{2}\right)$
48) A girl calculates the probability of her winning in a match is 0.08 what is the probability of her losing the game \qquad -
(a) 91%
(b) 8%
(c) 92%
(d) 80%
49) Standard deviation of population is denoted by \qquad
(a) Ω
(b) ω
(c) σ
(d) Δ
50) In a single throw of die, the probabitityof getting a muttiple of 3 is \qquad
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $\frac{2}{3}$

