QB365 Question Bank Software Study Materials

Applications of Vector Algebra Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 40

 $20 \times 2 = 40$

A particle is acted upon by the forces $(\hat{3}i-\hat{2}j+\hat{2}k)$ and $(\hat{2}i+\hat{j}-\hat{k})$ is displaced from the point (1, 3, -1) to the point (4, -1, λ). If the work done by the forces is 16 units, find the value of λ .

Answer: Resultant of the given forces is $\vec{F}=(\hat{3i}-\hat{2j}+\hat{2k})+(\hat{2i}+\hat{j}-\hat{k})=\hat{5i}-\hat{j}+\hat{k}$

The displacement of the particle is given by

$$ec{d} = (\hat{4i} - \hat{j} + \hat{\lambda k}) - (\hat{i} + 3\hat{j} - \hat{k}) = (3\hat{i} - 4\hat{j} + (\lambda + 1)\hat{k})$$

As the work done by the forces is 16 units, we have

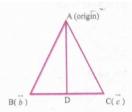
$$\vec{F} \cdot \vec{d} = 16$$

That is
$$(\hat{5i} - \hat{j} + \hat{k})$$
. $(3\hat{i} - 4\hat{j} + (\lambda + 1))\hat{k} = 16 \Rightarrow \lambda + 20 = 16$

So,
$$\lambda = -4$$

2) Prove by vector method that the median to the base of an isosceles triangle is perpendicular to the base.

Answer:



Let ABC be an isosceles triangle with AB = AC and let AD is the median

D is mid-point of BC.

$$\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) \ \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

$$\overrightarrow{DA}\cdot\overrightarrow{DB}=-\overrightarrow{AD}\cdot\left(rac{-1}{2}\overrightarrow{CB}
ight)$$

$$=-\overrightarrow{AD}\cdot\left(rac{1}{2}\overrightarrow{BC}
ight)$$

$$=rac{1}{2}\overrightarrow{AD}\cdot\overrightarrow{BC}$$

$$=rac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})\cdot(\overrightarrow{BA}+\overrightarrow{AC})$$

$$=rac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})\cdot(\overrightarrow{AC}-\overrightarrow{AB})$$

$$= \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{AC}) \cdot (\overrightarrow{AC} - \overrightarrow{AB})$$
$$= \frac{1}{4}[(\overrightarrow{AC} \cdot \overrightarrow{AC}) - (\overrightarrow{AB} \cdot \overrightarrow{AB})]$$

$$=rac{1}{4}[(AC \cdot AC) - (AB)]$$

$$=\frac{1}{4}(0)=0$$

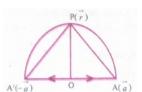
$$= \frac{1}{4}(0) = 0$$

$$\overrightarrow{DA} \cdot \overrightarrow{DB} = 0$$

$$\overrightarrow{DA} \perp \overrightarrow{DB}$$

3) Prove by vector method that an angle in a semi-circle is a right angle.

Answer:



Let O be the centre of the semi-circle and AA¹ be the diameter.

Let P be any point on the circumference of the semi circle.

Taking O as the origin, let the position vectors of A and P be a and \vec{r} respectively.

Let us prove that $\angle APB = 90^{\circ}$

W.K.T OA = OB = OP (because of radius)

$$\overrightarrow{PA} = \overrightarrow{PO} + \overrightarrow{OA}$$

$$\overrightarrow{PB} = \overrightarrow{PO} + \overrightarrow{OB}$$

$$PA \cdot PB = (PO + OA)(PO - OA)$$
 $PA \cdot PB = (PO + OA)(PO - OA)$
 $PA \perp PB$
 $PA \perp PB$
 $PA \perp PB$
 $PA \perp PB = 90^{\circ}$. Hence proved.

4) Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $-6\hat{i} + 14\hat{j} + 10\hat{k}, 14\hat{i} - 10\hat{j} - 6\hat{k}$ and $2\hat{i} + 4\hat{j} - 2\hat{k}$

Answer: Let
$$ec{a}=-6\hat{i}+14\hat{j}+10\hat{k},$$
 $ec{b}=14\hat{i}-10\hat{j}-6\hat{k}$ and $ec{c}=2\hat{i}+4\hat{j}-2\hat{k}$

Volume of the parallelepiped having \vec{a}, \vec{b} and \vec{c} as its co-terminus edges is $\vec{a}. (\vec{b} \times \vec{c})$.

- = -6(44) 14(-16) + 10(76)
- = -264 + 224 + 760 = 720
- : Volume of the required parallelepiped = 720 cubic units.
- If $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}, \vec{c}=y\hat{i}+x\hat{j}+(1+x+y)\hat{k}$ show that $[\vec{a},\vec{b},\vec{c}]$ depends on neither x nor y.

Answer: Given
$$\vec{a} = \hat{i} - \hat{k}$$
, $\vec{b} = x\hat{i} + \hat{i} + (1-x)\hat{k}$, $\vec{c} = u\hat{i} + x\hat{i} + (1+x+u)\hat{k}$

Answer: Given
$$\vec{a} = \hat{i} - \hat{k}, \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \vec{c} = y\hat{i} + x\hat{j} + (1 + x + y)\hat{k}$$

$$[\vec{a}, \vec{b}\vec{c}] = \vec{a}. (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix}$$

$$= 1 \begin{vmatrix} 1 & 1 - x \\ x & 1 + x - y \end{vmatrix} + 0 - y \begin{vmatrix} x & y \\ y & x \end{vmatrix}$$

$$=1egin{array}{c|c} 1&1-x\ x&1+x-y \end{array}+0-yegin{array}{c|c} x&y\ y&x \end{array}$$

$$=1+\cancel{x}-\cancel{y}-\cancel{x}+\cancel{x}^2-\cancel{x}^x+\cancel{y}$$

- $\vec{b} \cdot [\vec{a}\vec{b}\vec{c}] = 1$ for all values of x and y
- $\vec{a} \cdot [\vec{a}\vec{b}\vec{c}]$ depends on neither x nor y.
- Find the vector and Cartesian form of the equations of a plane which is at a distance of 12 units from the origin and perpendicular to $6\hat{i}+2\hat{j}-3\hat{k}$

Answer: Let
$$\hat{d}=6\hat{i}+2\hat{j}-3\hat{k}$$
 and p = 12

If \hat{d} is the unit normal vector in the direction of the vector $6\hat{i}+2\hat{j}-3\hat{k}$

then
$$\hat{d}=rac{\hat{d}}{|\hat{d}|}=rac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$$

If \hat{r} is the position vector of an arbitrary point (x, y, z) on the plane, then using $\vec{r} \cdot \hat{d} = p$, the vector equation of the plane in normal form is $ec{r}.\,rac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})=12$

Substituting
$$\vec{r}=\hat{xi}+\hat{yj}+\hat{zk}$$
 in the above equation, we get $(\hat{xi}+\hat{yj}+\hat{zk})$. $\frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})=12$

Applying dot product in the above equation and simplifying, we get 6x + 2y - 3z = 84, which is the Cartesian equation of the required plane.

If the Cartesian equation of a plane is 3x - 4y + 3z = -8, find the vector equation of the plane in the standard form.

Answer: If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is the position vector of an arbitrary point (x, y, z) on the plane, then the given equation can be written as $(x\hat{i}+y\hat{j}+z\hat{k})$. $(3\hat{i}-4\hat{j}+3\hat{k})=-8$ or $(x\hat{i}+y\hat{j}+z\hat{k})$. $(-3\hat{i}+4\hat{j}-3\hat{k})=8$.

That is, \hat{r} . $(-3\hat{i}+4\hat{j}-3\hat{k})=8$ which is the vector equation of the given plane in standard form.

8) Find the vector and Cartesian equations of the plane passing through the point with position vector $4\hat{i}+2\hat{j}-3\hat{k}$ and normal to vector $2\hat{i} - \hat{j} + \hat{k}$

Answer: If the position vector of the given point is $\vec{a} = 4\hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{n} = 2\hat{i} - \hat{j} + \hat{k}$, then the equation of the plane passing through a point and normal to a vector is given by $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$ or $\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$

Substituting $ec{a}=4\hat{i}+2\hat{j}-3\hat{k}$ and $ec{n}=2\hat{i}-\hat{j}+\hat{k}$ in the above equation, we get

$$ec{r}.\,(2\hat{i}-\hat{j}+\hat{k})=(4\hat{i}+2\hat{j}-3\hat{k}).\,(2\hat{i}-\hat{j}+\hat{k})$$

Thus, the required vector equation of the plane is $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 3$. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then we get the Cartesian equation of the plane 2x - y + z = 3.

Verify whether the line $\frac{x-3}{-4} = \frac{y-4}{-7} = \frac{z+3}{12}$ lies in the plane 5x-y+z=8.

Answer: Here $(x_1, y_1, z_1) = (3, -4, -3)$ and direction ratios of the given straight line are (a, b, c) = (-4, -7, 12).

Direction ratios of the normal to the given plane are (A, B, C) = (5, -1, 1).

We observe that, the given point $(x_1, y_1, z_1) = (3, 4, -3)$ satisfies the given plane 5x-y+z=8

Next,
$$aA+bB+cC = (-4)(5)+(-7)(-1)+(12)(1) = -1 \neq 0$$
.

So, the normal to the plane is not perpendicular to the line.

Hence, the given line does not lie in the plane.

Find the angle between the planes \vec{r} . $(\hat{i} + \hat{j} - 2\hat{k})$ = 3 and 2x - 2y + z = 2

Answer: Given planes are $ec{r}.\,(\hat{i}+\hat{j}-2\hat{k})$ and

$$2x-2y+z=2\Rightarrowec{r}.\left(2\hat{i}-2\hat{j}+\hat{k}
ight)=3$$

$$dots ...$$
 $ec{n}_1 = \hat{i} + \hat{j} - 2\hat{k}$ and $ec{n}_2 = 2\hat{i} - 2\hat{j} + \hat{k}$

Angle between the plane is'

$$cos heta = rac{ec{n}_1.ec{n}_2}{|ec{n}_1||ec{n}_2|} = rac{|1(2) + 1(-2) - 2(1)|}{\sqrt{1^2 + 1^2 + (-2)^2.\sqrt{2^2 + (-2)^2 + 1^2}}}$$

A force of magnitude 6 units acting parallel to 2i-2j+k displaces the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

ł

Find the parametric form of vector equation of a line passing through a point (2, -1, 3) and parallel to line $\vec{r} = \begin{pmatrix} \land & \land \\ i + j \end{pmatrix} + t \begin{pmatrix} 2 & \land \\ i + j \end{pmatrix} - 2 \end{pmatrix}$

p=-

If the planes $ec{r}$. $\left(\stackrel{\wedge}{i}+2\stackrel{\wedge}{j}+3\stackrel{\wedge}{k}\right)=7$ and $ec{r}$. $\left(\stackrel{\wedge}{\lambda i}+2\stackrel{\wedge}{j}-7\stackrel{\wedge}{k}\right)=26$ are perpendicular. Find the value of λ .

∆=**4**

Let \vec{a},\vec{b},\vec{c} be unit vectors such $\vec{a}.\vec{b}=\vec{a}.\vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. Prove that $\vec{a}=\pm 2\left(\vec{b}\times\vec{c}\right)$

Type I even degree reciprocal equation

Prove that for any two vectors $ec{a}$ and $ec{b}|ec{a}+ec{b}| \leq |ec{a}| + |b|$ (Triangle inequality)

Answer: We have

$$egin{aligned} |ec{a} + ec{b}|^2 &= |ec{a}|^2 + |ec{b}|^2 + 2(ec{a} \cdot ec{b}) \ \Rightarrow |ec{a} + ec{b}|^2 &= |ec{a}|^2 + |ec{b}|^2 + 2|ec{a}||ec{b}|\cos heta \ &\leq |ec{a}|^2 + |ec{b}|^2 + 2|ec{a}||ec{b}| \ [\because \cos heta \leq 1] \ \Rightarrow |ec{a} + ec{b}|^2 \leq (|ec{a}| + |ec{b}|)^2 \ \Rightarrow |ec{a} + ec{b}| \leq |ec{a}| + |ec{b}| \end{aligned}$$

For what value of m the vectors \vec{a} and \vec{b} perpendicular to each other.

$$(i)\ ec{a}=m\hat{i}+2\hat{j}+\hat{k}\ and\ ec{b}=4\hat{i}-9\hat{j}+2\hat{k}$$

$$(ii)~ec{a}=5\hat{i}-9\hat{j}+2\hat{k}~and~ec{b}=m\hat{i}+2\hat{j}+\hat{k}$$

Answer: (i) Given
$$\vec{a} \perp \vec{b}$$

∴ $\vec{a} \cdot \vec{b} = 0 \Rightarrow (m\hat{i} + 2\hat{j} + \hat{k}) \cdot (4\hat{i} - 9\hat{j} + 2\hat{k}) = 0$
⇒ $4m - 18 + 2 = 0 \Rightarrow m = 4$
(ii) $(5\hat{i} - 9\hat{j} + 2\hat{k}) \cdot (m\hat{i} + 2\hat{j} + \hat{k}) = 0$
⇒ $5m - 18 + 2 = 0 \Rightarrow m = \frac{16}{5}$

Prove that $|\begin{bmatrix} \vec{a} & \vec{b} & \bar{c} \end{bmatrix}| = abc$ if and only if $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular.

Answer:
$$\vec{a}, \vec{b}, \vec{c}$$
 are mutually perpendicular $\Leftrightarrow |[\vec{a}, \vec{b}, \vec{c}]|$
 $\Leftrightarrow |[\vec{a}, \vec{b}, \vec{c}]| = |\vec{a}||\vec{b}||\vec{c}|$
 $\Leftrightarrow |[\vec{a}, \vec{b}, \vec{c}]| = abc$

18) If the edges
$$\vec{a}=-3\hat{i}+7\hat{j}+5\hat{k},\ \vec{b}=-5\hat{i}+7\hat{j}-3\hat{k},\ \vec{c}=7\hat{i}-5\hat{j}-3\hat{k}$$
 meet at a vertex, find the volume of the parallelepiped.

Answer: Volume of the parallelepiped $= \begin{bmatrix} \vec{a}, & \vec{b}, & \vec{c} \end{bmatrix}$

$$= \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix}$$

$$= -264$$

The volume cannot be negative

Volume of parallelepiped = 264 cu. units.

19) If
$$ec{a} imes(ec{b} imesec{c})=(ec{a} imesec{b}) imesec{c}$$
 prove that $(ec{c} imesec{a}) imesec{b}=ec{0}$

Answer: Given
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

 $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$
 $\Rightarrow (\vec{a} \cdot \vec{b})\vec{c} = (\vec{b} \cdot \vec{c})\vec{a}$
 $\Rightarrow (\vec{c} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{c} = \vec{0}$
 $\Rightarrow (\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$

Find the shortest distance between the parallel lines
$$ec{r}=(\hat{i}-\hat{j})+t(2\hat{i}-\hat{j}+\hat{k})$$
 and $ec{r}=(2\hat{i}+\hat{j}+\hat{k})+s(2\hat{i}-\hat{j}+\hat{k})$

Answer: Comparing the given equations with

$$\begin{split} \vec{r} &= \vec{a} + s\vec{b} \text{ and } \vec{r} = \vec{c} + t\vec{b} \\ \vec{a} &= \hat{i} - \hat{j} \quad \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \\ \vec{c} &= 2\hat{i} + \hat{j} + \hat{k} \\ \vec{c} &= 2\hat{i} + 2\hat{j} + \hat{k} \\ \vec{c} &= -\vec{a} = \hat{i} + 2\hat{j} + \hat{k} \\ |(\vec{c} - \vec{a}) \times \vec{b}| &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{vmatrix} \\ &= \hat{i}(2+1) - \hat{j}(1-2) + \hat{k}(-1-4) \\ &= 3\hat{i} + \hat{j} - 5\hat{k} \\ |(\vec{c} - \vec{a}) \times \vec{b}| &= \sqrt{9+1+25} = \sqrt{35} \\ |\vec{b}| &= \sqrt{4+1+1} = \sqrt{6} \\ \text{distance} &= \frac{|(\vec{c} - \vec{a}) \times \vec{b}|}{|\vec{b}|} \\ &= \frac{\sqrt{35}}{\sqrt{6}} = \sqrt{\frac{35}{6}} \text{ units.} \end{split}$$