QB365 Question Bank Software Study Materials

Applications of Vector Algebra 50 Important 1Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 50

 $50 \times 1 = 50$

If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to

- (a) 2 (b) -1 (c) 1 (d) 0
- If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then

(a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ (b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$ (c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ (d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$

If $ec{a}$. $ec{b}=ec{b}$. $ec{c}=ec{c}$. $ec{a}=0$, then the value of $[ec{a},ec{b},ec{c}]$ is

(a) $|\vec{a}| |\vec{b}| |\vec{c}|$ (b) $\frac{1}{3} |\vec{a}| |\vec{b}| |\vec{c}|$ (c) 1 (d) -1

If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b} and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to

(a) \vec{a} (b) \vec{b} (c) \vec{c} (d) $\vec{0}$

If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is

(a) 1 (b) -1 (c) 2 (d) 3

The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j},\hat{i}+2\hat{j},\hat{i}+\hat{j}+\pi\hat{k}$ is

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$

If \vec{a} and \vec{b} are unit vectors such that $[\vec{a},\vec{b},\vec{a}\times\vec{b}]=\frac{1}{4}$, then the angle between \vec{a} and \vec{b} is

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$, $\vec{b}=\hat{i}+\hat{j}$, $\vec{c}=\hat{i}$ and $(\vec{a}\times\vec{b})\times\vec{c}=\lambda\vec{a}+\mu\vec{b}$, then the value of $\lambda+\mu$ is

(a) 0 (b) 1 (c) 6 (d) 3

If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is equal to

(a) **81** (b) 9 (c) 27 (d) 18

If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is

(a) $\frac{\pi}{2}$ (b) $\frac{3\pi}{4}$ (c) $\frac{\pi}{4}$ (d) π

If the volume of the parallelepiped with $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as coterminous edges is,

(a) 8 cubic units (b) 512 cubic units (c) 64 cubic units (d) 24 cubic units

Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ Let P_1 and P_2 be the planes determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_1 and P_2 is

(a) 0° (b) 45° (c) 60° (d) 90°

If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are

(a) perpendicular (b) parallel (c) inclined at an angle $\frac{\pi}{3}$ (d) inclined at an angle $\frac{\pi}{6}$

If $\vec{a}=2\hat{i}+3\hat{j}-\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}-5\hat{k}$, $\vec{c}=3\hat{i}+5\hat{j}-\hat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is

```
(a) -17\hat{i}+21\hat{j}-97\hat{k} (b) 17\hat{i}+21\hat{j}-123\hat{k} (c) -17\hat{i}-21\hat{j}+97\hat{k} (d) -17\hat{i}-21\hat{j}-97\hat{k}
```

- 15) The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}, z = 2$ and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is
 - (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
- If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane x + 3y α z + β = 0, then (α, β) is
 - (a) (-5, 5) **(b)** (-6, 7) (c) (5, -5) (d) (6, -7)
- The angle between the line $ec{r}=(\hat{i}+2\hat{j}-3\hat{k})+t(2\hat{i}+\hat{j}-2\hat{k})$ and the plane $ec{r}.\,(\hat{i}+\hat{j})+4=0$ is
 - (a) 0° (b) 30° (c) 45° (d) 90°
- The coordinates of the point where the line $\vec{r}=(6\hat{i}-\hat{j}-3\hat{k})+t(-\hat{i}+4\hat{j})$ meets the plane $\vec{r}.(\hat{i}+\hat{j}-\hat{k})$ = 3 are
 - (a) (2, 1, 0) (b) (7, -1, -7) (c) (1, 2, -6) (d) (5, -1, 1)
- Distance from the origin to the plane 3x 6y + 2z + 7 = 0 is
 - (a) 0 **(b) 1** (c) 2 (d) 3
- The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0
 - (a) $\frac{\sqrt{7}}{2\sqrt{2}}$ (b) $\frac{7}{2}$ (c) $\frac{\sqrt{7}}{2}$ (d) $\frac{7}{2\sqrt{2}}$
- If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then
 - (a) $c = \pm 3$ (b) $c = \pm \sqrt{3}$ (c) c > 0 (d) 0 < c < 1
- The vector equation $\vec{r}=(\hat{i}-2\hat{j}-\hat{k})+t(6\hat{j}-\hat{k})$ represents a straight line passing through the points
 - (a) (0, 6, -1) and (1, -2, -1) (b) (0, 6, -1) and (-1, -4, -2) (c) (1, -2, -1) and (1, 4, -2) (d) (1, -2, -1) and (0, -6, 1)
- If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are
 - (a) ± 3 (b) ± 6 (c) -3, 9 (d) 3, -9
- If the planes \vec{r} . $(2\hat{i}-\lambda\hat{j}+\hat{k})=3$ and \vec{r} . $(4\hat{i}+\hat{j}-\mu\hat{k})=5$ are parallel, then the value of λ and μ are
 - (a) $\frac{1}{2}$, -2 (b) $-\frac{1}{2}$, 2 (c) $-\frac{1}{2}$, -2 (d) $\frac{1}{2}$, 2
- If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the value of λ is
 - (a) $2\sqrt{3}$ (b) $3\sqrt{2}$ (c) 0 (d) 1
- The vector, $d\hat{i}+\hat{j}+2\hat{k},\hat{i}+\lambda\hat{j}-\hat{k}$ t and $2\hat{i}-\hat{j}+\lambda\hat{k}$ are co-planar if ______
 - (a) $\lambda = -2$ (b) $\lambda = 1 + \sqrt{3}$ (c) $\lambda = 1 \sqrt{3}$ (d) $\lambda = -2, 1 \pm \sqrt{3}$
- Let \vec{a} , \vec{b} and \vec{c} be three non- coplanar vectors and let \vec{p} , \vec{q} , \vec{r} be the vectors defined by the relations $\vec{P} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ Then the value of $(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} = \underline{\qquad}$
 - (a) 0 (b) 1 (c) 2 (d) 3
- The number of vectors of unit length perpendicular to the vectors (i+j) and (j+k) is ______
 - (a) 1 **(b) 2** (c) 3 (d) ∞
- 29) If $ec{d}=ec{a} imes \left(ec{b} imes ec{c}
 ight) + ec{b} imes (ec{c} imes ec{a}) + ec{c} imes \left(ec{a}+ec{b}
 ight)$, then ______
 - (a) $\left| ec{d} \right|$ (b) $ec{d} = ec{a} + ec{b} + ec{c}$ (c) $ec{d} = ec{0}$ (d) a, b, c are coplanar
- If \vec{a} and \vec{b} are two unit vectors, then the vectors $\left(\vec{a}+\vec{b}\right) imes\left(\vec{a} imes\vec{b}\right)$ is parallel to the vector ______
 - (a) $\vec{a} \vec{b}$ (b) $\vec{a} + \vec{b}$ (c) $2\vec{a} \vec{b}$ (d) $2\vec{a} + \vec{b}$

31)	The area of the parallelogram having diagonals $ec{a}=3\hat{i}+\hat{j}-2\hat{k}$ and $ec{b}=\hat{i}-3\hat{j}+\overset{\wedge}{4k}$ is
	(a) 4 (b) $2\sqrt{3}$ (c) $4\sqrt{3}$ (d) $5\sqrt{3}$
32)	The p.v, OP of a point P make angles 60° and 45° with X and Y axis respectively. The angle of inclination of \overrightarrow{OP} with z-axis is
	(a) 75° (b) 60° (c) 45° (d) 3
33)	If the work done by a force $\vec{F} = \hat{i} + m \hat{j} - \hat{k}$ in moving the point of application from(1, 1, 1) to (3, 3, 3) along a straight line is 12 units, then m is
	(a) 5 (b) 2 (c) 3 (d) 6
34)	The two planes $3x + 3y - 3z - 1 = 0$ and $x + y - z + 5 = 0$ are
	(a) mutually perpendicular (b) parallel (c) inclined at 45° (d) inclined at 30
35)	If $\left[ec{a},ec{b},ec{c} ight]$ = 3 and $ ec{c} =1$ then $\left \left(ec{b} imesec{c} ight) imes(ec{c} imesec{a}) ight $ is
	(a) 1 (b) 3 (c) 6 (d) 9
36)	For any three vectors $ec{a},ec{b}$ and $ec{c},$ $\left(ec{a}+ec{b} ight)$. $\left(ec{b}+ec{c} ight) imes (ec{c}+ec{a})$ is
	(a) 0 (b) $\left[\vec{a},\vec{b},\vec{c}\right]$ (c) $2\left[\vec{a},\vec{b},\vec{c}\right]$ (d) $\left[\vec{a},\vec{b},\vec{c}\right]^2$
37)	If the vectors $a\hat{i}+\hat{j}+\hat{k},\hat{i}+b\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c\hat{k}$ (a \neq b \neq c \neq 1) are coplaner, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
	(a) 0 (b) 1 (c) 2 (d) $\frac{abc}{(1-a)(1-b)(1-c)}$
38)	The unit normal vector to the plane $2x + 3y + 4z = 5$ is
20)	(a) $\frac{2}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} + \frac{4}{\sqrt{29}}\hat{k}$ (b) $\frac{2}{\sqrt{29}}\hat{i} - \frac{3}{\sqrt{29}}\hat{j} + \frac{4}{\sqrt{29}}\hat{k}$ (c) $\frac{2}{\sqrt{29}}\hat{i} - \frac{3}{\sqrt{29}}\hat{j} - \frac{4}{\sqrt{29}}\hat{k}$ (d) $\frac{2}{5}\hat{i} + \frac{3}{5}\hat{j} + \frac{4}{5}\hat{k}$
39)	The angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is
	(a) $\frac{\pi}{3}$ (b) $\frac{-2\pi}{3}$ (c) $\frac{-\pi}{3}$ (d) $\frac{2\pi}{3}$
40)	The distance from the origin to the plane $ec{r}.\left(\stackrel{\wedge}{2i}-\stackrel{\wedge}{j}+5\stackrel{\wedge}{k} ight)=7$ is
	(a) $\frac{7}{\sqrt{30}}$ (b) $\frac{\sqrt{30}}{7}$ (c) $\frac{30}{7}$ (d) $\frac{7}{30}$
41)	Let $\vec{u}, \vec{v}, \vec{w}$ be vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $ \vec{u} = 3$, $ \vec{v} = 4$, $ \vec{w} = 5$ then $\vec{u}.\vec{v} + \vec{v}.\vec{w} + \vec{w}.\vec{u}$ is
	(a) 25 (b) -25 (c) 5 (d) $\sqrt{5}$
42)	The length of the $\perp^{\rm r}$ from the origin to plane \vec{r} . $\left(3i+4j+12k\right)$ = 26 is
	(a) 2 (b) $\frac{1}{2}$ (c) 26 (d) $\frac{26}{169}$
43)	If $\vec{a}, \vec{b}, \vec{c}$ are three non - coplanar vectors, then $\frac{\vec{a}.\vec{b} \times \vec{c}}{\vec{c} \times \vec{a}.\vec{b}} + \frac{\vec{b}.\vec{a} \times \vec{c}}{\vec{c}.\vec{a} \times \vec{b}} = $
	(a) 0 (b) 1 (c) -1 (d) $\frac{\vec{a}.\vec{b}\times\vec{c}}{\vec{b}\times\vec{c}.\vec{c}}$
44)	If $ec{a}$ is a non-zero vector and m is a non-zero scalar then $mec{a}$ is a unit vector if
	(a) $m=\pm 1$ (b) $a= \vec{m} $ (c) $a=\frac{1}{ m }$ (d) $a=1$
45)	If $ ec{a}+ec{b} =\midec{a}-ec{b} $ then
	(a) \vec{a} is parallel to \vec{b} (b) \vec{a} is perpendicular to \vec{b} (c) $ \vec{a} = \vec{b} $ (d) \vec{a} and \vec{b} are unit vectors

The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of parallelogram OPRQ Then \angle POQ is ______

(a) $\tan^{-1} \frac{1}{3}$ (b) $\cos^{-1} \left(\frac{3}{10} \right)$ (c) $\sin^{-1} \left(\frac{3}{\sqrt{10}} \right)$ (d) $\sin^{-1} \left(\frac{1}{3} \right)$

47) If $[\vec{a}+\vec{b},\vec{b}+\vec{c},\vec{c}+\vec{a}]=8$ then $[\vec{a},\vec{b},\vec{c}]$ is ______

(a) 4 (b) 8 (c) 32 (d) -4

The shortest distance of the point (2, 10, 1) from the plane $ec{r}\cdot(3\hat{i}-\hat{j}+4\hat{k})=2\sqrt{26}$ is ______

(a) $2\sqrt{26}$ (b) $\sqrt{26}$ (c) 2 (d) $\frac{1}{\sqrt{26}}$

The vector $(ar{a} imes ec{b}) imes (ec{c} imes ec{a})$ is _____

(a) perpendicular to $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} (b) parallel to the vectors $(\vec{a} imes \vec{b})$ and $(\vec{c} imes \vec{d})$

(c) parallel to the line of intersection of the plane containing $ec{a}$ and $ec{b}$ and the plane containing $ec{c}$ and $ec{d}$

(d) perpendicular to the line of intersection of the plane containing $ec{a}$ and $ec{b}$ and the plane containing $ec{c}$ and $ec{d}$

If $\vec{a}, \vec{b}, \vec{c}$ are a right handed triad, of mutually perpendicular vectors of magnitude a, b, c then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is ______

(a) $a^2b^2c^2$ (b) 0 (c) $\frac{1}{2}abc$ (d) abc