QB365 Question Bank Software Study Materials

Ordinary Differential Equations 50 Important 1Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 50

 $50 \times 1 = 50$

The order and degree of the differential equation $rac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^{1/3}+x^{1/4}=0$ are respectively

(a) 2, 3 (b) 3, 3 (c) 2, 6 (d) 2, 4

The differential equation representing the family of curves $y = A\cos(x + B)$, where A and B are parameters, is

(a) $\frac{d^2y}{dx^2} - y = 0$ (b) $\frac{d^2y}{dx^2} + y = 0$ (c) $\frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2x}{dy^2} = 0$

The order and degree of the differential equation $\sqrt{sinx}(dx+dy)=\sqrt{cosx}(dx-dy)$ is

(a) 1, 2 (b) 2, 2 (c) 1, 1 (d) 2, 1

The order of the differential equation of all circles with centre at (h, k) and radius 'a' is

(a) 2 (b) 3 (c) 4 (d) 1

The differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary constants is

(a) $\frac{d^2y}{dx^2}+y=0$ (b) $\frac{d^2y}{dx^2}-y=0$ (c) $\frac{dy}{dx}+y=0$ (d) $\frac{dy}{dx}-y=0$

6) The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

(a) xy = k (b) $y = k \log x$ (c) y = kx (d) $\log y = kx$

The solution of the differential equation $2xrac{dy}{dx}-y=3$ represents

(a) straight lines (b) circles (c) parabola (d) ellipse

The solution of $rac{dy}{dx} + p(x)y = 0$ is

(a) $y=ce^{\int pdx}$ (b) $y=ce^{-\int pdx}$ (c) $x=ce^{-\int pdy}$ (d) $x=ce^{\int pdy}$

9) The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$ is

(a) $\frac{x}{e^{\lambda}}$ (b) $\frac{e^{\lambda}}{x}$ (c) λe^{x} (d) e^{x}

The integrating factor of the differential equation $rac{dy}{dx} + P(x)y = Q(x)$ is x, then P(x)

(a) x (b) $\frac{x^2}{2}$ (c) $\frac{1}{x}$ (d) $\frac{1}{x^2}$

The degree of the differential equation $y(x)=1+rac{dy}{dx}+rac{1}{1.2}\left(rac{dy}{dx}
ight)^2+rac{1}{1.2.3}\left(rac{dy}{dx}
ight)^3+\ldots$ is

(a) 2 (b) 3 (c) 1 (d) 4

If p and q are the order and degree of the differential equation $y = \frac{dy}{dx} + x^3 \left(\frac{d^2y}{dx^2} \right) + xy = cosx$, When

(a) p < q (b) p = q (c) p > q (d) p exists and q does not exist

The solution of the differential equation $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$ is

(a) $y + \sin^{-1} x = c$ (b) $x + \sin^{-1} y = 0$ (c) $y^2 + 2 \sin^{-1} x = c$ (d) $x^2 + 2 \sin^{-1} y = c$

The solution of the differential equation $rac{dy}{dx}=2xy$ is

```
(a) y = Ce^{x^2} (b) y = 2x^2 + C (c) y = Ce^{-x^2} + C (d) y = x^2 + C
```

The general solution of the differential equation $\log\left(\frac{dy}{dx}\right) = x + y$ is

(a)
$$e^x + e^y = C$$
 (b) $e^x + e^{-y} = C$ (c) $e^{-x} + e^y = C$ (d) $e^{-x} + e^{-y} = C$

16) The solution of $\frac{dy}{dx} = 2^{y-x}$ is

(a)
$$2^x + 2^y = C$$
 (b) $2^x - 2^y = C$ (c) $\frac{1}{2^x} - \frac{1}{2^y} = C$ (d) $x + y = C$

The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi'\left(\frac{y}{x}\right)}$ is

(a)
$$x\phi\left(rac{y}{x}
ight)=k$$
 (b) $\phi\left(rac{y}{x}
ight)=kx$ (c) $y\phi\left(rac{y}{x}
ight)=k$ (d) $\phi\left(rac{y}{x}
ight)=ky$

If sin x is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is

(a)
$$\log \sin x$$
 (b) $\cos x$ (c) $\tan x$ (d) $\cot x$

The number of arbitrary constants in the general solutions of order n and n + 1 are respectively

(a)
$$n-1,n$$
 (b) $n,n+1$ (c) $n+1,n+2$ (d) $n+1,n$

The number of arbitrary constants in the particular solution of a differential equation of third order is

Integrating factor of the differential equation $\frac{dy}{dx} = \frac{x+y+1}{x+1}$ is

(a)
$$\frac{1}{x+1}$$
 (b) $x+1$ (c) $\frac{1}{\sqrt{x+1}}$ (d) $\sqrt{x+1}$

The population P in any year t is such that the rate of increase in the population is proportional to the population. Then

(a)
$$P=Ce^{kt}$$
 (b) $P=Ce^{-kt}$ (c) $P=Ckt$ (d) $P=Ce^{-kt}$

P is the amount of certain substance left in after time t. If the rate of evaporation of the substance is proportional to the amount remaining, then

(a)
$$P = Ce^{kt}$$
 (b) $P = Ce^{-kt}$ (c) $P = Ckt$ (d) $Pt = C$

If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents a circle, then the value of a is

The slope at any point of a curve y = f (x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1, 1). Then the equation of the curve is

(a)
$$y = x^3 + 2$$
 (b) $y = 3x^2 + 4$ (c) $y = 3x^4 + 4$ (d) $y = 3x^2 + 5$

The order and degree of the differential equation $\left[\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)\right]^{\frac{1}{2}} = \frac{d^3y}{dx^3}$ are ______

27) If cosx is an integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$, then P = _____

(a)
$$-\cot x$$
 (b) $\cot x$ (c) $\tan x$ (d) $-\tan x$

The solution of $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$ is _____

(a)
$$\tan x + \tan y = c$$
 (b) $\sec x + \sec y = c$ (c) $\tan x \tan y = c$ (d) $\sec x - \sec y = c$

The transformation y = vx reduces $\frac{dy}{dx} = \frac{x+y}{3x}$

(a)
$$\frac{3av}{4v+1}=\frac{dx}{x}$$
 (b) $\frac{3dv}{v+1}=\frac{dx}{x}$ (c) $2x\frac{dv}{dx}=v$ (d) $\frac{3dv}{1-2v}==\frac{dx}{x}$

The solution of $\frac{dy}{dx} + y \cot x = \sin 2x \text{ is}$

(a)
$$y \sin x = \frac{2}{3} \sin^3 x + c$$
 (b) $y \sec x = \frac{x^2}{2} + c$ (c) $y \sin x = c + x$ (d) $2y \sin x = \sin x - \frac{\sin 3x}{3} + c$

31)	The I.F of y log y $rac{dx}{dy} + x - log \ y = 0$ is
	(a) $\log(\log y)$ (b) $\log y$ (c) $\frac{1}{\log y}$ (d) $\frac{1}{\log(\log y)}$
32)	The I.F of $\frac{dy}{dx} - y \tan x = \cos x$ is
	(a) $\sec x$ (b) $\cos x$ (c) $e^{\tan x}$ (d) $\cot x$
33)	The order and degree of $y'+(y'')^2 = (x + t'')^2$ are
	(a) 1, 1 (b) 1, 2 (c) 2, 1 (d) 2, 2
34)	On finding the differential equation corresponding to $y = e^{mx}$ where m is the arbitrary constant, then m is
	(a) $\frac{y}{y^1}$ (b) $\frac{y^1}{y}$ (c) y' (d) y
35)	The population p of a certain bacteria decreases at a rate proportional to the population p. The differential equation corresponding the above statement is
	(a) $\frac{dp}{dt}=rac{k}{p}$ (b) $\frac{dp}{dt}=kt$ (c) $\frac{dp}{dt}=kp$ (d) $\frac{dp}{dt}=-kp$
36)	The general solution of x $\frac{dy}{dx}$ = y is
	(a) $y = cx$ (b) $x^2 + y^2 = c$ (c) $x^2 - y^2 = c$ (d) $y = c^x$
37)	The differential equation of $x^2y = k$ is
	(a) $x^2 rac{dy}{dx} = 0$ (b) $x^2 rac{dy}{dx} + y = 0$ (c) $x rac{dy}{dx} + 2y = 0$ (d) $y rac{dy}{dx} + 2x = 0$
38)	Using y = vx, the differential equation $\frac{dy}{dx} = \frac{y}{x + \sqrt{xy}}$ is reduced to
	(a) $x(1+\sqrt{v})dv = v\sqrt{v}dx$ (b) $x(1-\sqrt{v})dv = v\sqrt{v}dx$ (c) $x(1+\sqrt{v})dv = -v\sqrt{v}dx$ (d) $v(1+\sqrt{v})dx - v\sqrt{v}dv = 0$
39)	The I.F. of $(1+y^2) dx = (\tan^{-1}-t-x) dy$ is
	(a) $e^{\tan^{-1}}y$ (b) $e^{\tan^{-1}}x$ (c) $\tan^{-1}y$ (d) $\tan^{-1}x$
40)	The differential equation associated with the family of concentric circles having their centres at the origin is
	(a) $\frac{dy}{dx} = \frac{-x}{y}$ (b) $\frac{dy}{dx} = \frac{-y}{x}$ (c) $\frac{dy}{dx} = \frac{x}{y}$ (d) $\frac{dy}{dx} = \frac{y}{x}$
41)	The solution of the differential equation $rac{dy}{dx}=e^{x+y}$ is
	(a) $e^x + e^y = c$ (b) $e^x + e^{-y} = c$ (c) $e^x - e^{-y} = c$ (d) none of these
42)	The order and degree of the differential equation $rac{d^3y}{dx^3}+6rac{dy}{dx}+3y=0$ is
	(a) 3, 1 (b) 1, 3 (c) 1, 1 (d) none of these
43)	The order and degree of the differential equation $4rac{d^2y}{dx^2}+6\Big(rac{dy}{dx}\Big)^2=\log x$ is
	(a) 1, 2 (b) 2, 1 (c) 2, not defined (d) not defined, 2
44)	The order and degree of the differential equation $rac{dy}{dx}- an y=0$
	(a) 1, 1 (b) 1, not defined (c) not defined, 1 (d) none of these
45)	The particular solution of the DE $\frac{dy}{dx}=y$ tan x, given that y = 1 when x = 0 is
	(a) $y = \cos x$ (b) $y = \sin x$ (c) $y = \sec x$ (d) $y = \sec x$
46)	The solution of the differential equation $x dy + y dx = 0$ is

(a) x - y = c (b) x + y = c (c) xy = c (d) none of these

47)

The solution of the differential equation $rac{dy}{dx}=1-y+x-xy$ is ______

(a) $\log(1-y) = x + \frac{x^2}{2} + c$ (b) $\log(1+y) = x + \frac{x^2}{2} + c$ (c) $e^{(1+y)} = x + \frac{x^2}{2} + c$ (d) none of these

The solution of the differential equation x cos y dy - (xe x log x 4 e x) dx is ______

(a) $\sin y = e^x \log x + c$ (b) $\sin y = e^x + \log y + c$ (c) $\sin y = e^x + \log x + c$ (d) none of these

The solution of the differential equation $rac{dy}{dx}=e^x+2$ is ______

(a) $y=e^x+C$ (b) $y=2x+e^x+C$ (c) $y=2xe^x+C$ (d) $y=e^x+2Cx$

50) If $\left(\frac{dy}{dx}\right)^2 = x + y + 5$ then order and degree are _____

(a) (1, 2) (b) (2,1) (c) (1, 1) (d) (2, 2)