QB365 Question Bank Software Study Materials

Theory of Equations 45 Important 1Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 45

 $45 \times 1 = 45$

A zero of $x^3 + 64$ is

(a) 0 (b) 4 (c) 4i (d) -4

If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then the degree of h is

(a) **mn** (b) m+n (c) m^n (d) n^m

A polynomial equation in x of degree n always has

(a) n distinct roots (b) n real roots (c) n complex roots (d) at most one root

4) If α, β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\Sigma \frac{1}{\alpha}$ is

(a) $-\frac{q}{r}$ (b) $-\frac{p}{r}$ (c) $\frac{q}{r}$ (d) $-\frac{q}{p}$

According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$?

(a) -1 (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (d) 5

The polynomial x^3 - kx^2 + 9x has three real zeros if and only if, k satisfies

(a) $|k| \le 6$ (b) k = 0 (c) |k| > 6 (d) $|k| \ge 6$

The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x - 2\sin^2 x + 1$ is

(a) 2 (b) 4 (c) 1 (d) ∞

8) If $x^3+12x^2+10ax+1999$ definitely has a positive zero, if and only if

(a) $a \ge 0$ (b) a > 0 (c) a < 0 (d) $a \le 0$

The polynomial $x^3 + 2x + 3$ has

(a) one negative and two imaginary zeros (b) one positive and two imaginary zeros (c) three real zeros (d) no zeros

The number of positive zeros of the polynomial $\sum\limits_{j=0}^{n}n_{C_r}$ (-1)^rx r is

(a) 0 (b) n (c) < n (d) r

If a, b, $c \in Q$ and $p + \sqrt{q}$ (p, $q \in Q$) is an irrational root of $ax^2 + bx + c = 0$ then the other root is ______

(a) $-p+\sqrt{q}$ (b) p-iq (c) $p-\sqrt{q}$ (d) $-p-\sqrt{q}$

12) The quadratic equation whose roots are α and β is ______

(a) $(x - \infty)(x - \beta) = 0$ (b) $(x - \infty)(x + \beta) = 0$ (c) $x + \beta = \frac{b}{a}$ (d) $x = \frac{-c}{a}$

13) If x is real and $\frac{x^2-x+1}{x^2+x+1}$ then _____

(a) $\frac{1}{3} \le k \le$ (b) $k \ge 5$ (c) $k \le 0$ (d) none

Let a > 0, b > 0, c > 0. Then n both the root of the equation $ax^2+bx+c=0$ are ______

(a) real and negative (b) real and positive (c) rational numbers (d) none

15) The equation $\sqrt{x+1}$ (b) $\sqrt{x-1} = \sqrt{4x-1}$ has solution (d) more than one solution 16) If the root of the equation $x^3 + bx^2 + cx - 1 = 0$ form an Increasing G.P, then _____ (a) one of the roots is 2 (b) one of the roots is 1 (c) one of the roots is -1 (d) one of the roots is -2 For real x, the equation $\left|\frac{x}{x-1}\right|+|x|=\frac{x^2}{|x-1|}$ has _____ (a) one solution (b) two solution (c) at least two solution (d) no solution 18) If the equation $ax^2 + bx + c = 0$ (a > 0) has two roots \propto and β such that $\propto < -2$ and $\beta > 2$, then _____ (a) $b^2-4ac = 0$ (b) $b^2-4ac < 0$ (c) $b^2-4ac > 0$ (d) $b^2-4ac \ge 0$ If $(2+\sqrt{3})^{x^2-2x+1}+(2-\sqrt{3})^{x^2-2x-1}=rac{2}{2-\sqrt{3}}$ then x = _____ (a) 0, 2 (b) 0, 1 (c) 0, 3 (d) $0, \sqrt{3}$ 20) If α , β , δ are the roots of the equation $x^3-3x+11=0$, then $\alpha+\beta+\delta$ is _____. (a) 0 (b) 3 (c) -11 (d) -3 21) If x^2 - hx - 21 = 0 and x^2 - 3hx + 35 = 0 (h > 0) have a common root, then h = _____ (a) 0 (b) 1 (c) 4 (d) 3 22) If $ax^2 + bx + c = 0$, a, b, $c \in R$ has no real zeros, and if a + b + c < 0, then _____ (a) c > 0 (b) c < 0 (c) c = 0 (d) $c \ge 0$ 23) If $p(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$ where $ac \ne 0$ then p(x). Q(x) = 0 has at least _____ real roots. (a) no (b) 1 (c) 2 (d) infinite For all x, $x^2 + 2ax + (10 - 3a) > 0$, then the interval in which a lies is _____ (a) a < -5 (b) -5 < a < 2 (c) a > 5 (d) 2 < a < 5The set of all real numbers of x for which $x^2 - |x + 2| + x > 0$ (a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (c) $(-\infty, -1) \cup (1, \infty)$ (d) $(\sqrt{2}, \infty)$ The number of real zeros of the polynomial function $x^2 + 1$ is _____ (a) 1 (b) 0 (c) 2 (d) None of these A zero of the polynomial $x^3 + 2x - i$ equals _____ (a) -i (b) 1 (c) 1 - i (d) None of these If lpha and eta are the roots of a $x^2-bx-c=0$, then lpha+eta equals ______ (a) $\frac{-b}{a}$ (b) $\frac{-c}{a}$ (c) $\frac{a}{b}$ (d) $\frac{b}{a}$ If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx+r=0$ then $lphaeta+eta\gamma+\gammalpha$ equals _____ (a) $\frac{-p}{q}$ (b) -p (c) q (d) -q A polynomial equation whose roots are 3 times those of the equation $2x^3 + 5x^2 + 7 = 0$ is _____ (a) $3x^3 - 15x^2 + 21 = 0$ (b) $2x^3 - 15x^2 - 189 = 0$ (c) $2x^3 + 15x^2 - 189 = 0$ (d) None of these 31) If α is a root of a reciprocal equation f(x) = 0 then another root of f(x) = 0 is _____ (a) $-\frac{1}{\alpha}$ (b) $\frac{1}{\alpha^2}$ (c) $\sqrt{\alpha}$ (d) $\frac{1}{\alpha}$

32) The equation $x^3 + 2x + 3 = 0$ has _____

(a) One positive real	root (b) One	negative real roo	(c) Three	real roots (d)	None of these

- Greatest possible number of real roots of $x^{10}-10x^6-5x^3+x+4=0$ is ______
 - (a) 6 (b) 5 (c) 10 (d) None of these
- The equation with rational co-efficients one of whose roots is $\sqrt{5}+\sqrt{2}$ given by ______
- (a) $x^4-14x^2+9=0$ (b) $x^4+14x^2+9=0$ (c) $x^4-14x+9=0$ (d) $x^4+14x^2-9=0$
- If 3 is a double root of the equation $8x^3-47x^2+66x+9=0$ then the third root is ______
 - (a) $-\frac{1}{8}$ (b) $\frac{1}{8}$ (c) 8 (d) -8
- 36) If α, β, γ are roots of $x^3+2x-6=0$ then the value of $\alpha\beta\gamma$ is ______
 - (a) 0 (b) 2 (c) 6 (d) -4
- 37) If the product of the roots of $3x^4 4x^3 + 2x^2 + x + a = 0$ is 21, then the value of a is _____
 - (a) 7 (b) -7 (c) -63 (d) 63
- If $lpha,eta,\gamma$ and δ are the roots of the equation $x^4+px^3+qx^2+rx+s=0$ then the value of $\sum rac{1}{lpha}$ is ______
 - (a) $\frac{s}{r}$ (b) $-\frac{S}{r}$ (c) $\frac{r}{s}$ (d) $-\frac{r}{s}$
- If $lpha,eta,\gamma$ are the roots of the equation $x^3+ax-b=0$ then the value of $\sum\left(rac{lpha}{eta\gamma}
 ight)$ ______
 - (a) $\frac{a}{b^2}$ (b) $-\frac{2a}{b}$ (c) $\frac{2a}{b}$ (d) $\frac{b^2}{a}$
- The sum of the squares of the roots of $x^3+ax^2-bx+c=0$ is ______
 - (a) $a^2 + 2b$ (b) $a^2 + 2b$ (c) $b^2 2c$ (d) $a^2 + 2c$
- If the roots of the equation $4x^3 24x^2 + 23x + 18 = 0$ are a-d, a and a+d then the value of a is ______
 - (a) 2 (b) 8 (c) 6 (d) -2
- 42) If a is a root of $x^4 2x^3 + 6x^2 + 2x 1 = 0$, then _____
 - (a) -a is also a root 1 (b) $\frac{1}{a}$ is also a root (c) 1 is a also a root (d) None of these
- If the roots of the equation $x^3 x^2 4x + 4 = 0$ are 1, -2, 2 then the roots of $4x^3 4x^2 x + 1 = 0$ are _____
 - (a) 1, -2, 2 **(b)** $1, -\frac{1}{2}, \frac{1}{2}$ (c) 1, 1, -2 (d) -1, -2, 2
- A reciprocal equation a of $a_0x^n+a_1x^{n-1}+\ldots+a^n=0$ is said to be of second type if _______
 - (a) $a_{
 m n-r}=a_{
 m r-1}$ (b) $a_{
 m n-r}=a_{
 m r+1}$ (c) $a_{n-r}=-a_r$ (d) $a_{n-r}=a_r$
- If $lpha,eta,\gamma$ are the roots $x^3+3x^2+x-4=0$, then the equation whose roots are $10lpha,10eta,10\gamma$ is ______
 - (a) $x^3 + 30x^2 + 10x 40 = 0$ (b) $x^3 + 30x^2 + 100x 4000 = 0$ (c) $4x^3 + 12x^2 + 4x 1 = 0$
 - (d) $10x^3 + 30x^2 + 10x 1 = 0$