QB365 Question Bank Software Study Materials

Theory of Equations Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 40

 $20 \ge 2 = 40$

1) If α , β and γ are the roots of the cubic equation $x^3+2x^2+3x+4 = 0$, form a cubic equation whose roots are, 2α , 2β , 2γ

Answer: The roots of $x^3+2x^2+3x^4 = 0$ are α , β , δ $\therefore \alpha+\beta+\delta = -co$ -efficient of $x^2 = -2$...(1) $\alpha\beta + \beta\delta + \delta\alpha = co$ -efficient of x = 3(2) $-\alpha\beta\delta = +4 \Rightarrow \alpha\beta\delta = -4$...(3) Form a cubic equation whose roots are 2α , 2β , 2δ $2\alpha+2\beta+2\delta = 2(\alpha+\beta+\delta) = 2(-2) = -4$ [from (1)] $4\alpha\beta+4\beta\delta+4\delta\alpha = 4(\alpha\beta+\beta\delta+\delta\alpha) = 4(3) = 12$ [from (2)] $(2\alpha)(2\beta)(2\delta) = 8(\alpha\beta\delta) = 8(-4) = -32$ [from (3)] \therefore The required cubic equation is $x^3-(2\alpha+2\beta+2\delta)x^2 + (2\alpha\beta+2\beta\delta+2\delta\alpha)x - (2\alpha)(2\beta)(2\delta) = 0$ $\Rightarrow x^3+(-4)x^2+12x+32 = 0$

```
2)
```

7)

If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$ in terms of p.

Answer : The discriminant $\Delta = ((4p)^2 - 4(4)(p+2) = 16(p^2-p-2) = 16(p+1)(p-2)$. So we get $\Delta < 0$ if -1 $<math>\Delta = 0$ if p = -1 or p = 2 $\Delta > 0$ if ∞ . Thus the given polynomial has imaginary roots if -1equal real roots if <math>p = -1 or p = 2; distinct real roots if $-\infty or <math>2$

³⁾ Find a polynomial equation of minimum degree with rational coefficients, having $2-\sqrt{3}$ as a root.

Answer: Since $2-\sqrt{3}i$ is a root and the coefficients are rational numbers, $2+\sqrt{3}i$ is also a root. A required polynomial equation is given by x^2 -(Sum of the roots) x + Product of the roots = 0 and hence x^2 - 4x +1 = 0 is a required equation.

4) Show that the equation $2x^2 - 6x + 7 = 0$ cannot be satisfied by any real values of x.

Answer : $\Delta = b^2$ - 4ac = -20 < 0. The roots are imaginary numbers.

5) If $x^2+2(k+2)x+9k = 0$ has equal roots, find k.

Answer : Here $\Delta = b^2 - 4ac = 0$ for equal roots. This implies $4(k + 2)^2 = 4(9)k$. This implies k = 4 or 1.

6) Obtain the condition that the roots of $x^{3} + px^{2} + qx + r = 0$ are in A.P.

Answer : Let the roots be in A.P. Then, we can assume them in the form a-d, a, a+d Applying the Vieta's formula $(a-d)+a+(a+d) = \frac{p}{1} = p \Rightarrow 3a = -p \Rightarrow a = -\frac{p}{3}$. But, we note that ais a root of the given equation. Therefore, we get $\left(-\frac{p}{3}\right)^3 + p\left(-\frac{p}{3}\right)^3 + q\left(-\frac{p}{3}\right)^3 + r = 0 \Rightarrow 9$ pq = 2p³+27r.

It is known that the roots of the equation x^3 - $6x^2$ - 4x + 24 = 0 are in arithmetic progression. Find its roots.

Answer: Let the roots be a-d, a, a+d.

 Then the sum of the roots is 3a which is equal to 6 from the given equation.

Thus 3a = 6 and hence a = 2.

The product of the roots is a^{3} - ad^{2} which is equal to -24 from the given equation.

Substituting the value of a, we get $8-2d^2 = -24$ and hence $d = \pm 4$.

If we take d = 4 we get -2, 2, 6 as roots and if we take d = -4, we get 6, 2, -2 as roots (same roots given in reverse order) of the equation.

8) If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$

Answer: The roots of $x^3+2x^2+3x+4 = 0$ are α , β , δ $\therefore \alpha + \beta + \delta = -co$ -efficient of $x^2 = -2$ (1) $\alpha\beta + \beta\delta + \delta\alpha = co$ -efficient of x = 3(2) $-\alpha\beta\delta = +4 \Rightarrow \alpha\beta\delta = -4$ (3) From the cubic equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} = \frac{3}{-4} = \frac{-3}{4}$ $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{-2}{-4} = \frac{1}{2}$ $\left(\frac{1}{\alpha}\right) \left(\frac{1}{\beta}\right) \left(\frac{1}{\gamma}\right) = \frac{1}{\alpha\beta\gamma} = \frac{1}{-4} = -\frac{1}{4}$ \therefore The required cubic equation is $x^3 - \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) x^2 + \left(\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}\right) x - \left(\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}\right)$ $\Rightarrow x^3 + \frac{3}{4}x^2 + \frac{1}{2}x + \frac{1}{4} = 0$ Multiplying by 4 we get, $4x^3 + 3x^2 + 2x + 1 = 0$

9) If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are $-\alpha$, $-\beta$, $-\gamma$

Answer: The roots of $x^3+2x^2+3x+4 = 0$ are \propto , β , \aleph $\therefore \propto + \beta + \aleph = -co$ -efficient of $x^2 = -2$...(1) $\alpha\beta + \beta\aleph + \aleph\alpha = co$ -efficient of x = 3 ...(2) $-\alpha\beta\aleph = +4 \Rightarrow \alpha\beta\aleph = -4$...(3) Form the equation whose roots are $\propto -\beta - \aleph$ $\therefore -\alpha -\beta - \aleph = -(\alpha + \beta + \aleph)$ = -(-2) = 2 $\alpha\beta + \beta\aleph + \aleph\alpha = 3$ $(-\alpha)(-\beta)(-\aleph) = -(\alpha\beta\aleph) = -(-4) = 4$ \therefore The required cubic equation is $x^3-(-\alpha - \beta - \aleph)x^2+(\alpha\beta + \beta\aleph + \aleph\alpha)$ $x-[(-\alpha)(-\beta)(-\aleph)] = 0$ $\Rightarrow x^3-(2)x^2+3x-4 = 0$ $\Rightarrow x^3-2x^2+3x-4 = 0$

¹⁰⁾ Construct a cubic equation with roots $2, \frac{1}{2}$ and 1

Answer: The cubic equation is

$$\begin{aligned} x^{3} - x^{2} & (\alpha + \beta + \gamma) + x (\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma = 0 \\ x^{3} - x^{2} & \left(2 + \frac{1}{2} + 1\right) + x \left(1 + \frac{1}{2} + 2\right) - (2) \left(\frac{1}{2}\right) (1) = 0 \\ x^{3} - x^{2} & \left(\frac{4 + 1 + 2}{2}\right) + x \left(\frac{2 + 1 + 4}{2}\right) - 1 = 0 \\ x^{3} - x^{2} & \left(\frac{7}{2}\right) + x \left(\frac{7}{2}\right) - 1 = 0 \\ 2x^{3} - 7x^{2} + 7x - 2 = 0 \end{aligned}$$

¹¹⁾ Formulate into a mathematical problem to find a number such that when its cube root is added to it, the result is 6.

Answer : Let that number be $\mathbf{x} : \sqrt[3]{x} + x = 6$

 $\Rightarrow \sqrt[3]{x} = 6 - x$

Taking power 3 both sides we get.

$$\begin{pmatrix} x^{\frac{1}{3}} \end{pmatrix}^3 = (6-x)^3 x = 6^3 - 3(6^2)x + 3(6)(x^2) - x^3 [\because (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3] \Rightarrow x = 216 - 108x + 18x^2 - x^3 \Rightarrow x^3 + 108x - 18x - 216 + x = 0 \Rightarrow x^3 - 18x^2 + 109x - 216 = 0. Which is the requires mathematical problem.$$

12) Construct a cubic equation with roots 2, -2, and 4.

> **Answer :** Here $\propto = 2$, $\beta = -2$ and $\aleph = 4$ $x^{3}-(2-2+4)x^{2}+(-4-8+8x)x-(2)(-2)(4) = 0$ $\Rightarrow x^{3} - 4x^{2} - 4x + 16 = 0$

13) If sin \propto , cos \propto are the roots of the equation ax² + bx + c-0 (c \neq 0), then prove that (n + c)² - b² + c²

Answer : Sum of the roots = $\sin \alpha + \cos \alpha = \frac{-b}{a}$ Product of the roots = $\sin \propto \cos \propto = \frac{c}{a}$ Now 1 = $\cos^2 \propto + \sin^2 \propto$ = $(\sin \propto +\cos \propto)^2 - 2 \sin \propto \cos \propto$ $1 = \frac{b^2}{a^2} - \frac{2c}{a} \Rightarrow 1 = \frac{b^2 - 2ac}{a^2}$ $\Rightarrow a^2 = b^2 - 2ac \Rightarrow a^2 + 2ac = b^2$ Adding c^2 both sides, $a^2 + 2ac + c^2 = b^2 + c^2$ \Rightarrow (a+c)² = b² + c²

Find value of a for which the sum of the squares of the equation x^2 - (a- 2) x - a -1 = 0 assumes the least value.)

Answer : Let \propto , β are the roots of the equation

Sum of the roots
$$\alpha + \beta = \frac{-b}{a}$$

$$= \frac{[-(a-2)]}{1} = a - 2$$
Product of the roots $= \alpha\beta = \frac{c}{a}$

$$= \frac{-(a+1)}{1} = -(a+1)$$
we have $\alpha^2\beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

$$= (a-2)^2 + 2(a+1)$$

$$= a^2 - 4a + 4 + 2a + 2$$

$$= (a-1)^2 + 5$$
Thus $\alpha^2 + \beta^2$ is least if a = 1

15) Find the Interval for a for which $3x^2+2(a^2+1)x+(a^2-3a+2)$ possesses roots of opposite sign.

Answer : The quadratic equation $3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2)$

Will have two roots of opposite sign if it has real roots and the product of the roots is negative.

⇒ 4(a²+1)²-12(a²-3a+2)
$$\geq$$
 0 and $rac{a^2-3a+2}{3} < 0$

Both of these conditions are true if

 \Rightarrow a²-3a+2< 0

- \Rightarrow (a-1)(a-2)< 0
- $\Rightarrow 1 < a < 2$

16) Find the number of positive and negative roots of the equation $x^7 - 6x^6 + 7x^5 + 5x^2 + 2x + 2$

```
Answer : Let p(x) = x^7 - 6x^6 + 7x^5 + 5x^2 + 2x + 2
```

It has only one change of sign. Now,

$$p(-x) = (-x)^7 - 6(-x)^6 + 7(-x)^5 + 5(-x)^2 + 2(-x) + 2$$
$$= -x^7 - 6x^6 - 7x^5 + 5x^2 - 2x + 2$$

It has two, change of sign.

Hence, p(x) has one positive root and has at least two negative roots.

17)

Find a polynomial equation of the lowest degree with rational co-efficients having $\sqrt{3}$ and 1 - 2i as two of its roots.

Answer: Since quadratic surds occur in pairs as roots, $-\sqrt{3}$ is also a root.

Since complex roots occur in conjugate pairs, 1+ 2i is also a root of the required polynomial equation. Therefore the desired equation is given by

$$(x-\sqrt{3})(x+\sqrt{3})(x-(1-2i))(x-(1+2i))=0$$

i.e., $x^4-2x^3+2x^2+6x-15=0$

¹⁸⁾ If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in arithmetic progression, show that $2p^3$ - 9 pq + 27r = 0

Answer: Let the roots of the given equation be a - d, a, a + d. Then $S_1 = a - d + a + a + d = 3a = -p \Rightarrow a = -\frac{p}{2}$ Since a is a root, it satisfies the given polynomial $\Rightarrow \left(-\frac{p}{3}\right)^3 + p\left(-\frac{p}{3}\right)^2 + q\left(-\frac{p}{3}\right) + r = 0$ On simplification, we obtain $2p^3 - 9pq + 27r = 0$

19)

Form an equation whose roots are three times those of the equation $x^3-x^2+x+1=0$

Answer : To obtain the required equation, we have to multiply the co-efficients of x^3, x^2, x and 1 by 1, 3, 3^2 and 3^3 respectively.

Thus $x^3 - 3x^2 + 9x + 27 = 0$ is the desired equation.

²⁰⁾ Form an equation whose roots are the reciprocals of the roots of $x^4 - 5x^3 + 7x^2 - 4x + 5 = 0$

Answer : We obtain the required equation, by replacing the co-efficients in the reverse order, as $5x^4 - 4x^3 + 7x^2 - 5x + 1 = 0$