QB365 Question Bank Software Study Materials

Two Dimensional Analytical Geometry-II Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

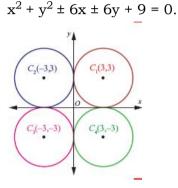
Maths

Total Marks: 40

 $20 \ge 2 = 40$

1) A circle of radius 3 units touches both the axes. Find the equations of all possible circles formed in the general form.

Answer : As the circle touches both the axes, the distance of the centre from both the axes is 3 units, centre can be $(\pm 3, \pm 3)$ and hence there are four circles with radius 3, and the required equations of the four circles are



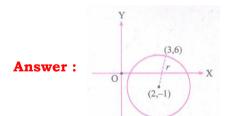
2) Find the centre and radius of the circle $3x^2 + (a + 1)y^2 + 6x - 9y + a + 4 = 0$.

Answer : Coefficient of x^2 = Coefficient of y^2 (characteristic (ii) for a second degree equation to represent a circle). That is, 3 = a + 1 and a = 2. Therefore the equation of the circle is $3x^2 + 3y^2 + 6x - 9y + 6 = 0$ $x^2 + y^2 + 2x - 3y + 2 = 0$ So, centre is $\left(-1, \frac{3}{2}\right)$ and radius $r = \sqrt{1 + \frac{9}{4} - 2}$ $= \sqrt{\frac{5}{2}}$

3) If y = 4x + c is a tangent to the circle $x^2 + y^2 = 9$, find c

Answer: The condition for the line y = mx + c to be a tangent to the circle x² + y² = a² is c² = a²(1 + m²) from Then $c = \pm \sqrt{9(1+16)}$ $c = \pm 3\sqrt{17}$

4) Find the equation of the circle with centre (2, -1) and passing through the point (3, 6) in standard form.



Given centre is (2, -1) and passing through the point (3, 6)

 \therefore r = distance between (2, -1) and (3, 6)

$=\sqrt{\left(2-3 ight)^2+\left(-1-6 ight)^2}$
$=\sqrt{(-1)^2+(-7)^2}$
= $\sqrt{1+49}=\sqrt{50}$
\therefore Equation of the circle is
$(x - h)^2 + (y - k)^2 = r^2$
$(x-2)^2+(y+1)^2=(\sqrt{50})^2$
$(x-2)^2+(y+1)^2 = 50$

5)

Find the equation of circles that touch both the axes and pass through (-4, -2) in general form.

Answer : Since the circle touch both the axis. Its equation will be

 $(x + a)^2 + (y + a)^2 = a^2$ (1) It passes through (-4, -2) $\therefore (-4 + a)^2 + (-2 + a)^2 = a^2$ $16 + a^2 + 8a + 4 + a^2 + 4a = a^2$ $\Rightarrow a^2 + 12a + 20 = 0$ $\Rightarrow (a + 10)(a + 2) = 0$ a = -10 or -2 (a, a) C Case (i): When a = -10, (1) becomes $(x + 10)^2 + (y + 10)^2 = 10^2$ $\Rightarrow x^2 + 100 + 20x + y^2 + 100 + 20y = 160$ $\Rightarrow x^2 + y^2 + 20x + 20y + 100 = 0$ Case (ii): When a = -2, (1) becomes \Rightarrow (x + 2)² + (y + 2)² = 2² $x^2 + 4x + 4 + y^2 + 4y + A = A$ $x^2 + y^2 + 4x + 4y + 4 = 0$

Hence, equation of the circles are $x^{2} + y^{2} + 4x + 4y + 4 = 0$ or $x^{2} + y^{2} + 20x + 20y + 100 = 0$

6)

Identify the type of conic section for each of the equations. $3x^2+3y^2-4x+3y+10 = 0$

Answer : Here A = 3, B = 0, C = 3, D = -4, E = 3 and F = 10 A = C and B = 0 (No xy term) Hence, the given equations represents a circle.

7) Identify the type of the conic for the following equations : $11x^2-25y^2-44x+50y-256 = 0$

Answer : A = 11, C = -25, D = -44, E = - 50, and F = -256 Here A \neq C and A and C are of opposite signs. Hence, the given equation represents a hyperbola.

8) Find centre and radius of the following circles. $x^2 + y^2 + 6x - 4y + 4 = 0$

Answer: Equation of the circle is $x^{2} + y^{2} + 6x - 4y + 4 = 0.$ Here $2g = 6 \Rightarrow g = 3$ $2f = -4 \Rightarrow f = -2 \text{ and } c = 4$ Centre is (-g, -f) \Rightarrow (-3, 2) $r = \sqrt{g^{2} + f^{2} - c} = \sqrt{3^{2} + (-2)^{2} - 4}$

- $= \sqrt{9 + 4 4}$ $= \sqrt{9}$ = 3 unit
- 9) Find centre and radius of the following circles. $x^2+y^2-x+2y-3 = 0$

Answer: Equation of the circle is
$$x^2 + y^2 - x + 2y - 3 = 0$$

Here $2g = -1 \Rightarrow g = \frac{-1}{2}$
 $2f = 2 \Rightarrow f = 1$ and $c = -3$
Centre is $(-g, -f) = (\frac{1}{2}, -1)$
and $r = \sqrt{g^2 + f^2 - c}$
 $= \sqrt{\frac{1}{4} + 1 + 3}$
 $= \sqrt{\frac{1}{4} + 4} = \sqrt{\frac{1+16}{2}}$
 $r = \sqrt{\frac{17}{2}}$ units.

Find the equation of the hyperbola in each of the cases given below:Centre (2, 1) one of the foci (8, 1) and corresponding directrix x = 4.

Answer : ae = distance between centre and focus

ae =
$$\sqrt{(8-2)^2 - (1-1)^2} = \sqrt{6^2} = 6$$
 ...(1)
Also $\frac{a}{e} = \sqrt{(4-2)^2 + (1-1)^2} = \sqrt{2^2} = 2$
[: (4, 1) is a point on the directrix]
(1) × (2) $\rightarrow a/e \times \frac{a}{e} = 6 \times 2$
 $\Rightarrow a^2 = 12$
(1) $\rightarrow a^2e^2 = 36$
 $\Rightarrow e^2 = 3$
 $\Rightarrow e = \sqrt{3}$
Also, b² = a²(e² - 1) = 12(3 - 1) = 12(2) = 24
 \therefore Equation of the hyperbola is
 $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$
 $\Rightarrow \frac{(x-2)^2}{12} - \frac{(y-1)^2}{24} = 1$

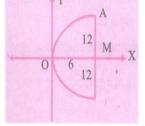
¹¹⁾ Find the equation of the parabola with vertex at the origin, passing through (2, -3) and symmetric about x-axis

Answer : Since the parabola is symmetric about x-axis, it is either open upward or downward.

Let the equation be $x^2 = 4ay ...(1)$ Since (2, -3) lies on the parabola, $2^2 = 4a(-3) \Rightarrow a = \frac{-1}{3}$ Substituting $a = \frac{-1}{3}$ in (1) we get, $x^2 = 4\left(\frac{-1}{3}\right) y \Rightarrow 3x^2 = -4y$. Which is the required equation of the parabola.

¹²⁾ If a parabolic reflector is 24 cm in diameter and 6 cm deep, find its locus.

Answer : Let AOB be the vertical section of the reflector and m is the mid-point of AB. Let the equation of the parabola be $y^2 = 4ax A(6, 12)$ lies on (1)



- $\therefore 12^2 = 4a(6) \Rightarrow a = 6$
- ∴ Focus is (a, 0) = (b, 0)

Hence focus coincides with m, the mid-point of AB.

¹³⁾ The equation $y = \frac{1}{32}x^2$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola; how high is this tube located above the vertex of the parabola?

Answer : a = 8

So the heating tube needs to be placed at focus (0,a). Hence the heating tube needs to be placed 8 units above the vertex of the parabola.

14) Find the length of the tangent from (2, 3) to the circle $x^2+y^2-4x-3y+12=0$

Answer : The length of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the point $(x_1,y_1) ext{ is } \sqrt{x_1^2+y_1^2+2gx_1+2fy_1+c}$

Length of the tangent to the given circle

$$egin{aligned} &= \sqrt{x_1^2 + y_1^2 - 4x_1 - 3y_1 + 12} \ &= \sqrt{2^2 + 3^2 - 4.2 - 3.3 + 12} \ &= \sqrt{4 + 9 - 8 - 9 + 12} \ &= \sqrt{8} \ &= 2\sqrt{2} ext{ units} \end{aligned}$$

15)

Find the equations and lengths of major and minor axes of $\frac{(x-1)^2}{\alpha^2} + \frac{(y+1)^2}{16} = 1$

Answer : Let x - 1 = X and y + 1 = Y

 \therefore The given equation becomes $rac{X^2}{9}+rac{Y^2}{16}=1$

Clearly the major axis is along Y-axis and the minor axis is along X-axis.

The equation of major axis is X = 0 and the equation of minor axis is Y = 0.

i.e., the equation of major axis is x - 1 = 0 and the equation of minor axis is y + 1 = 0

Here
$$a^2 = 16, \ b^2 = 9$$

 \therefore Length of major axis (2a) = 3

: Length of minor axis (2b) = 6

16)

Find the equations of directrices, latus rectum and length of latus rectums of the following ellipse $25x^2 + 9y^2 = 225$

Answer : $\therefore \frac{x^2}{9} + \frac{y^2}{25} = 1$ Here $a^2 = 25, \ b^2 = 9$ $e=\sqrt{1-rac{b^2}{a^2}}=\sqrt{1-rac{9}{25}}=rac{4}{5}$ The equations of the directrices are $y = \pm \frac{a}{e}$ $y = rac{\pm 25}{4}$ Equations of the latus rectum are $y = \pm ae$ $y = \pm 4$ Length of the latus rectum is $\frac{2b^2}{a} = \frac{2 \times 9}{5}$ = $\frac{18}{5}$

$$=\frac{18}{5}$$

17)

Find the equation of the hyperbola whose foci are $(\pm 6, 0)$ and length of the transverse axis is 8.

Answer : From the given data the transverse a:ris is along x-axis

$$F_2(-6, 0)$$
 $F_1(6, 0)$ x

The equation is of the form

$$rac{(x-h)^2}{a^2} - rac{(y-k)^2}{b^2} = 1$$

The centre is the midpoint of F_1 and F_2

i.e., $C ext{ is } \left(rac{-6+6}{2}, rac{0+0}{2} ight) = (0,0)$
The length of the transverse axis $2a = 8$
$\Rightarrow a = 4$
$F_1F_2=2ae=12\Rightarrow ae=6$
$\therefore 4e = 6$
$e=rac{6}{4}=rac{3}{2}$
$b^2 = a^2 \left(e^2 - 1 ight) = 16 \left(rac{9}{4} - 1 ight)$
$=rac{16 imes 5}{4}=20$
\therefore The required equation is $rac{x^2}{16} - rac{y^2}{20} = 1$

18)

Find the equations and length of transverse and conjugate axes of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$

Answer: The centre is at the origin, the transverse axis is along x -axis and the conjugate axis is along the y -axis i.e.,

transverse axis is x axis

i.e., y = 0 and the conjugate axis y- axis i.e., x = 0. Hence $a^2 = 9, b^2 = 4 \Rightarrow a = 3, b = 2$ Length of transverse axis = 2a = 6 Length of conjugate axis = 2b = 4

¹⁹⁾ Find the equations of directrices, latus rectum and length of latus rectrum of the hyperbola $9x^2 - 36x - 4y^2 - 16y + 56 = 0$

Answer: $\frac{(y+2)^2}{9} - \frac{(x-2)^2}{2} = 1$ The transverse axis is parallel to y axis. $a^2 = 9$ $b^2 = 4$ a = 3 b = 2 $c^2 = a^2 + b^2$ $= 9 + 4c^2 = 13$ $c = \sqrt{13}$ $ae = \sqrt{13}$ $ae = \sqrt{13}$ $ae = \sqrt{13} \Rightarrow e = \frac{\sqrt{13}}{3}$ Centre (h, k) = (2, -2)directrix $y = \pm \frac{a}{e} + k$ $= \pm \frac{3}{\sqrt{13}} - 2$ $y = \pm \frac{9}{\sqrt{13}} - 2$ Length of latus rectum $= \frac{2b^2}{a}$ $= \frac{2(4)}{3} = \frac{8}{3}$

20)

¹ Find the equation of the parabola. if the curve is open leftward, vertex is (2,1) and passing through the point (1, 3)

Answer : Since the curve is open leftward, the required equation of the parabola is

 $(y-k)^2 = -4a(x-h)$ Given vertex (h, k) = (2, 1) $\therefore (y-1)^2 = -4a(x-2)$ (2) Since this pass through (1, 3) we get $(3-1)^2 = -4a(1-2)$ 4 = -4a(-1)a = 1 $\therefore (1) \Rightarrow (y-1)^2 = -4(x-2)$ which is required equation of the parabola