QB365 Question Bank Software Study Materials

Applications of Differential Calculus Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

Maths

Total Marks: 40

2 Marks

 $20 \ge 2 = 40$

1) A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?

Answer : Let r be the radius of the ripple and A be the area of the ripple.

GIven $\frac{dr}{dt} = 2 \text{ cm/sec}$ and $r = 5 \text{ cm} \dots (1)$ We know $A = \pi r^2$ Differentiating with respect to 't' we get, $\frac{dA}{dt} = \pi(2r) \cdot \frac{dr}{dt}$ $= \pi(2)$ (5) (2) [using (1)] $\frac{dA}{dt} = 20 \text{ msq.cm/sec.}$

2) Find the points of x the curve $y = x^3 - 3x^2 + x - 2$ at which the tangent is parallel to the line y = x

Answer : The slope of the line y = x is 1. The tangent to the given curve will be parallel to the line, if the slope of the tangent to the curve at a point is also 1. Hence,

 $\frac{dy}{dx} = 3x^2 - 6x + 1 = 1$ which gives $3x^2 - 6x = 0$ Hence, x = 0 and x = 2. Therefore, at (0, -2) and (2, -4) the tangent is parallel to the line y = x.

3) Find the angle of intersection of the curve $y = \sin x$ with the positive x -axis.

Answer: The curve y = sin x intersects the positive x -axis. When y = 0 which gives, x = $x = n\pi, n = 1, 2, 3, ...$ Now, $\frac{dy}{dx} = cosx$. The slpoe $x = n\pi$ are $cos(n\pi) = (-1)^n$. Hence, the required angle of intersection is $m_2 = 0$ $tan\theta = \frac{(-1)^n - 0}{1 + ((-1)^n(0))} = 1 \forall n$

4) Find the absolute extrema of the following functions on the given closed interval.

$$f(x) = 6x^{\frac{1}{4}} - 3x^{\frac{1}{3}}; [-1, 1]$$
Answer: $f'(x) = 6 \times \frac{4}{3}x^{\frac{4}{3}-1} - 3 \times \frac{1}{3}x^{\frac{1}{3}-1}$

$$= 8x^{\frac{1}{3}} - x^{\frac{-2}{3}}$$

$$f(x) = 0$$

1 _

3

 $\Rightarrow 8x^{\frac{1}{3}} - \frac{1}{x^{\frac{2}{3}}} = 0$ $\Rightarrow \frac{8x-1}{x^{\frac{2}{3}}} = 0$ $\Rightarrow x = \frac{1}{8}$ Thus, the critical number is $x = \frac{1}{8}$ Evaluating f(x) at the end points = -1 x = 1 and at the critical number x = $\frac{1}{8}$ we get $f(-1) = 6(-1)^{\frac{4}{3}} - 3(-1)^{\frac{1}{3}}$ = 6(1) - 3(-1) = 6 + 3 = 9 $f(1) = 6(1)^{\frac{4}{3}} - 3(1)^{\frac{1}{3}} = 6 - 3 = 3$ $f(\frac{1}{8}) = 6(\frac{1}{8})^{\frac{4}{3}} - 3(\frac{1}{8})^{\frac{1}{3}}$ $= 6(2^{-3})^{\frac{4}{3}} - 3(2^{-3})^{\frac{1}{3}}$

$$= \frac{\breve{1}}{16} - \frac{\breve{2}}{2} = \frac{\breve{8}}{8} - \frac{\breve{2}}{2}$$
$$= \frac{3-12}{8} = \frac{-9}{8}$$

From these values, the absolute maximum is 9 which occurs at x = -1 and the absolute minimum is $-\frac{9}{8}$ which occurs at x = $\frac{1}{8}$

5) Find the values in the interval (1, 2) of the mean value theorem satisfied by the function $f(x) = x - x^2$ for $1 \le x \le 2$

Answer : f(1) = 0 and f(2) = -2. Clearly f(x) is defined and differentiable in 1 < x < 2. Therefore, by the Mean Value Theorem, there exists a $c \in (1, 2)$ such that by $f'(c) = \frac{f(2) - f(1)}{1 - 2c} = 1 - 2c$

That is
$$1-2c=-2 \Rightarrow c=rac{3}{2}$$

6) Find the asymptotes of the following curves $f(x) = rac{3x}{\sqrt{x^2+2}}$

Answer:

$$f(x) = \frac{3x}{\sqrt{x^2+2}}$$

 $\lim_{x \to \infty} \frac{3x}{\sqrt{x^2+2}} = \lim_{\frac{1}{x} \to 0} \frac{3}{\sqrt{1+\frac{2}{x^2}}}$
 $= \frac{3}{\sqrt{1+0}} = 3$

 \therefore y = 3 is the horizontal asymptote.

Also
$$\lim_{x o -\infty} rac{3x}{\sqrt{x^2+2}} = \lim_{rac{1}{x} o 0^-} rac{3}{\sqrt{1+rac{2}{x^2}}} = -3$$

 \therefore y = -3 is the horizontal asymptote

7) Compute the limit $\lim_{x \to a} (\frac{x^n - a^n}{x - a})$

Answer : If we put directly x = a we observe that the given function is in an indeterminate form $\frac{0}{0}$. As the numerator and the denominator functions are polynomials they both are differentiable.

Hence by an application of the l'Hôpital Rule we get,

$$egin{aligned} &lim_{x
ightarrow a}(rac{x^n-a^n}{x-a}) = lim_{x
ightarrow a}(rac{n imes x^{n-1}}{1}) \ &= n imes a^{n-1}. \end{aligned}$$

8) $\lim_{ heta
ightarrow 0}(rac{1-\cos m heta}{1-\cos n heta})$ =1, then prove that, $m=\pm n$

Answer: As this is an indeterminate form $\left(\frac{0}{0}\right)$ using the l'Hôpital's Rule $\lim_{\theta \to 0} \left(\frac{1-\cos n\theta}{1-\cos n\theta}\right) = \lim_{\theta \to 0} \left(\frac{m-\sin n\theta}{n-\sin n\theta}\right)$ $\lim_{\theta \to 0} \frac{m}{n} \left(\frac{\frac{\sin n\theta}{\theta}}{\frac{\sin n\theta}{\theta}}\right) = \frac{m^2}{n^2}$ Therefore, $m^2 = n^2$ That is $m = \pm n$.

9) Evaluate: $\lim_{x
ightarrow\infty}(rac{x^2+17x+29}{x^4}).$

Answer : This is an indeterminate of the form $\left(\frac{\infty}{\infty}\right)$.

To evaluate this limit, we apply 1 'Hôpital Rule. $\lim_{x \to \infty} (x^2 + 17x + 29)$

¹⁰⁾ Prove that the function $f(x) = x^2 + 2$ is strictly increasing in the interval (2,7) and strictly decreasing in the interval (-2, 0)

Answer : We have, $f'(x)=2x>0, orall x\in (2,7)$ and $f'(x)=2x>0, orall x\in (-2,0)$ and hence the proof is completed.

11)

A man 2 m high walks at a uniform speed of 5 km/ hr away from a lamp post 6 m high. Find the rate at which the length of his shadow increases?

Answer : Let AB be the lamp post. Let the man CD be at distance x m from lamp post and y m be the length of his shadow at

any time t.

Given $\frac{dx}{dt}$ = 5 km / hr = 5000 m/hr \triangle ABE and CDE are similar

$$A$$

$$C$$

$$B x D y$$

$$E$$

$$A$$

$$DE = BE / AB$$

$$\Rightarrow \frac{y}{2} = \frac{x+y}{6}$$

$$\Rightarrow 6y = 2x+2y$$

$$\Rightarrow 4y = 2x$$

$$\Rightarrow y = \frac{x}{2}$$

$$\Rightarrow \frac{dy}{dt} = \frac{1}{2} \frac{dx}{dt} = \frac{1}{2} (5000)$$

$$= 2500 \text{ m/hr} = 2.5 \text{ km/hr}.$$

A

¹²⁾ Find the point on the parabola $y^2=18x$ at which the ordinate increases at twice the rate of the abscissa.

Answer: $\left(\frac{9}{8}, \frac{9}{2}\right)$

13) Verify Rolle 's Theorem for
$$f(x) = \left|x-1
ight|, O \leq x \leq 2$$

Answer : Rolle's theorem is not valid.

¹⁴⁾ Prove that the function $f(x)=2x^2+3x$ is strictly increasing on $\left[-\frac{1}{2},\frac{1}{2}\right]$ Answer: f(x) is strictly increasing $\left[-\frac{1}{2},\frac{1}{2}\right]$

15) Determine the domain of concavity of the curve $y=2-x^2$

Answer : concave downward everywhere

16) show that the distance from the origin to the plane 3x + 6y + 2z + 7 = 0 is 1

Answer: Distance from the orgin (0, 0, 0) to the plane is

$$egin{aligned} &= \left|rac{3(0)-6(0)+2(0)+7}{\sqrt{9+36+4}}
ight| \ &= rac{7}{\sqrt{49}} \ &= rac{7}{7} = 1 \end{aligned}$$

17)

) Find the local maxima and local minima (if any) for the function $\cos x, \, 0 < x < \pi$

Answer: Let(x) = $\cos x$, $0 < x < \pi$

f(x) = -sinx

For maximum or minimum, $f'(x) = 0 \Rightarrow \sin x = 0$ But $\sin x
eq 0$ for $0 < x < \pi$

f(x) has neither local maxima nor local minima for 0 < x < π

¹⁸⁾ Find absolute maxima and absolute minima for the function $f(x)=x^3, x\in [-2,2]$

Answer: $f(x) = x^3$ $f'(x) = 3x^2$ $f'(x) = 0 \Rightarrow 3x^2 = 0$ $x = 0 \in [-2, 2]$ Now, $f(-2) = (-2)^3 = -8$ f(0) = 0 $f(2) = (2)^3 = 8$ \therefore Absolute maximum is 8 at x = 2 Absolute minimum is - 8 at x = -2

19) Evaluate: $\lim_{x \to 0^+} x \log x$

Answer : $\lim_{x\to 0^+} x \log x$ [$0 \times \infty$ Indeterminate form] = $\lim_{x\to 0^+} \frac{\log x}{\frac{1}{x}}$ [$\frac{\infty}{\infty}$ Indeterminate form] Applying L' Hopital's rule

$$= \lim_{x
ightarrow 0^+} rac{\left(rac{1}{x}
ight)}{rac{-1}{x^2}} \ = \lim_{x
ightarrow 0^+} (-x) = 0$$

20) Evaluate: $\lim_{x\to 2} \frac{\sin \pi x}{2-x}$

Answer: $\lim_{x\to 2} \frac{\sin \pi x}{2-x}$ $(\frac{0}{0} form$ Applying L' Hopital's rule $= \lim_{x\to 2} \frac{\pi \cos \pi x}{-1}$ $= -\pi \cos 2\pi = -\pi$