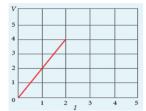
## **QB365 Question Bank Software Study Materials**

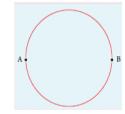
## Current Electricity 50 Important 1 Marks Questions With Answers (Book Back and Creative)

12th Standard


## **Physics**

Total Marks: 50

## **Multiple Choice Question**


 $50 \times 1 = 50$ 

The following graph shows current versus voltage values of some unknown conductor. What is the resistance of this conductor?



(a) 2 ohm (b) 4 ohm (c) 8 ohm (d) 1 ohm

A wire of resistance 2 ohms per meter is bent to form a circle of radius 1m. The equivalent resistance between its two diametrically opposite points, A and B as shown in the figure is



(a)  $\pi\Omega$  (b)  $\frac{\pi}{2}\Omega$  (c)  $2\pi\Omega$  (d)  $\frac{\pi}{4}\Omega$ 

A toaster operating at 240 V has a resistance of 120  $\Omega$ . The power is \_\_\_\_\_.

(a) 400 W (b) 2 W (c) 480 W (d) 240 W

A carbon resistor of  $(47 \pm 4.7)$  k  $\Omega$  to be marked with rings of different colours for its identification. The colour code sequence will be \_\_\_\_\_.

(a) Yellow - Green - Violet - Gold (b) Yellow - Violet - Orange - Silver (c) Violet - Yellow - Orange - Silver

(d) Green - Orange - Violet - Gold

What is the value of resistance of the following resistor?



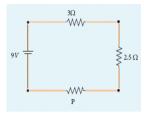
(a) 100 k  $\Omega$  (b) 10 k  $\Omega$  (c) 1 k  $\Omega$  (d) 1000 k  $\Omega$ 

Two wires of A and B with circular cross section made up of the same material with equal lengths. Suppose  $R_A = 3 R_B$ , then what is the ratio of radius of wire A to that of B?

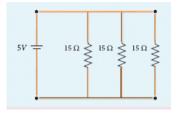
(a) 3 (b)  $\sqrt{3}$  (c)  $\frac{1}{\sqrt{3}}$  (d)  $\frac{1}{3}$ 

A wire connected to a power supply of 230 V has power dissipation  $P_1$ . Suppose the wire is cut into two equal pieces and connected parallel to the same power supply. In this case power dissipation is  $P_2$ . The ratio  $\frac{P_2}{P_1}$  is \_\_\_\_\_.

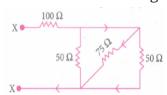
(a) 1 (b) 2 (c) 3 (d) 4


In India electricity is supplied for domestic use at 220 V. It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R, the resistance of a 60 W bulb for use in USA will be \_\_\_\_\_.

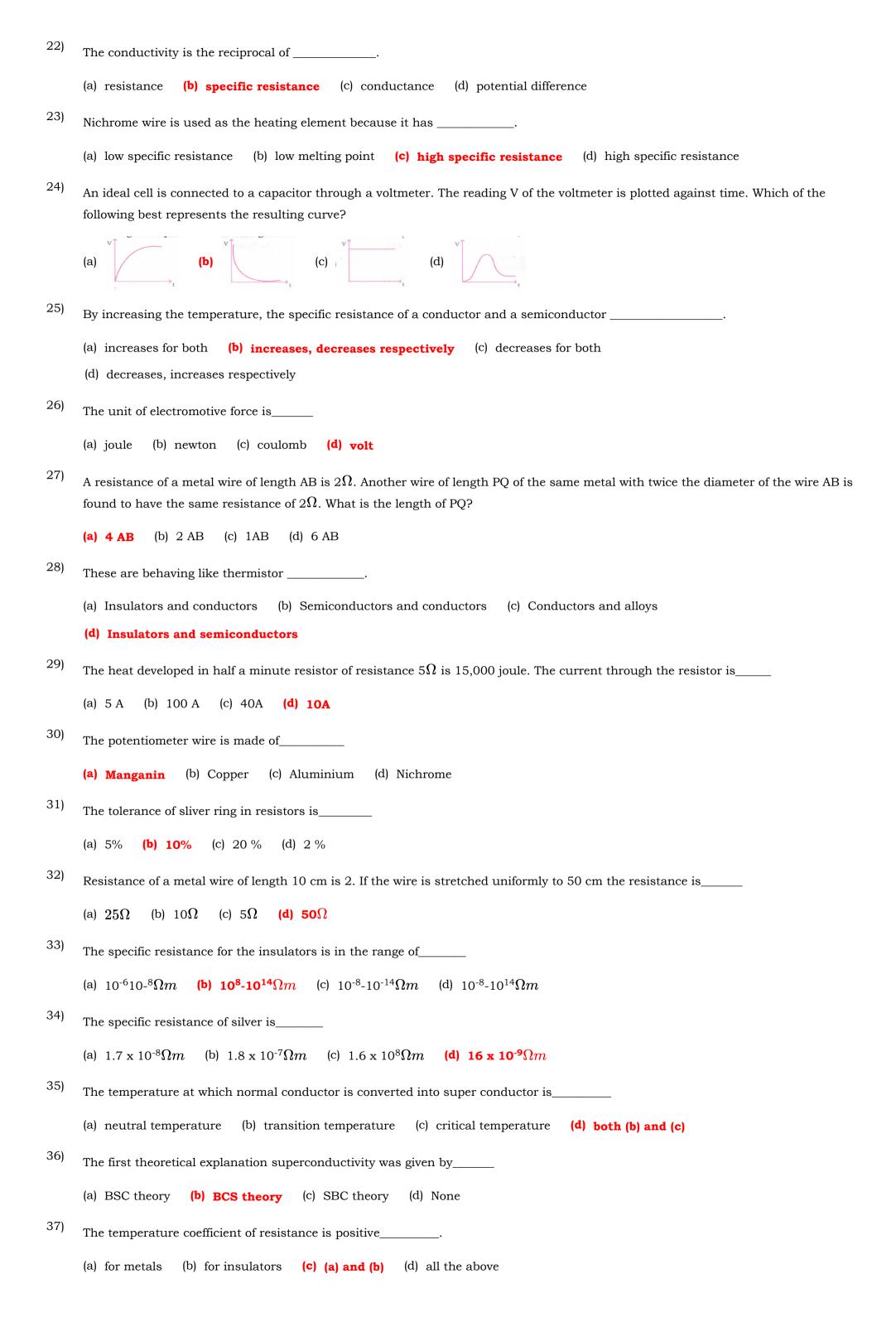
(a) R (b) 2R (c)  $\frac{R}{4}$  (d)  $\frac{R}{2}$ 


In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW are connected. The voltage of electric mains is 220 V. The maximum capacity of the main fuse of the building will be \_\_\_\_\_.

(a) 14 A (b) 8 A (c) 10 A (d) 12 A


There is a current of 1.0 A in the circuit shown below. What is the resistance of P?




- (a)  $1.5 \Omega$  (b)  $2.5 \Omega$  (c)  $3.5 \Omega$  (d)  $4.5 \Omega$
- What is the current drawn out from the battery?



- (a) 1 A (b) 2 A (c) 3 A (d) 4 A
- The temperature coefficient of resistance of a wire is 0.00125 per °C. At 20°C, its resistance is 1  $\Omega$ . The resistance of the wire will be 2  $\Omega$  at \_\_\_\_\_.
  - (a) 800 °C (b) 700 °C (c) 850 °C (d) 820 °C
- The internal resistance of a 2.1 V cell which gives a current of 0.2 A through a resistance of 10  $\Omega$  is \_\_\_\_\_.
  - (a)  $0.2 \Omega$  (b)  $0.5 \Omega$  (c)  $0.8 \Omega$  (d)  $1.0 \Omega$
- A piece of copper and another of germanium are cooled from room temperature to 80 K. The resistance of \_\_\_\_\_.
  - (a) each of them increases (b) each of them decreases (c) copper increases and germanium decreases
  - (d) copper decreases and germanium increases
- In Joule's heating law, when R and t are constant, if the H is taken along the y axis and  $I^2$  along the x axis, the graph is \_\_\_\_\_.
  - (a) straight line (b) parabola (c) circle (d) ellipse
- An electron gun in a TV shoots out a beam of electrons. The beam current is  $10\mu$ A. The charge that strikes the screen in 1 minute is
  - (a)  $+600\mu C$  (b)  $-600\mu C$  (c)  $+10\mu C$  (d)  $-10\mu C$
- A metallic block has no potential difference applied across it, then the mean velocity of free electrons is \_\_\_\_\_\_\_
  - (a) proportional to T (b) proportional for  $\sqrt{T}$  (c) finite but independent of temperature (d) zero
- 18) In an electrical arrangement as shown the equivalent resistance between X and Y will be



- (a)  $158.75\Omega$  (b)  $118.75\Omega$  (c)  $218.75\Omega$  (d)  $318.75\Omega$
- A square aluminum rod is 1 m long and 5 mm on edge. What must be the radius of another aluminum rod whose length is 1 m and which has the same resistance as that of square Aluminum rod?
  - (a) 1.4 mm (b) 2.8 mm (c) 4.2 mm (d) 5.6 mm
- Kirchoff's I law i.e,  $\Sigma i=0$  at a junction, deals with the conservation of \_\_\_\_\_.
  - (a) charge (b) energy (c) momentum (d) angular momentum
- The potential gradient of the potentiometer wire depends on \_\_\_\_\_\_
  - (a) only on the current that flows (b) only on the resistance per unit length of the wire (c) both the above mentioned
  - (d) none of the above



| 38) | In Kirchhoff's II law the current in clockwise direction is taken as                                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) positive (b) negative (c) neutral (d) no direction                                                                                                   |
| 39) | The small error in Meter Bridge experiment due to end resistance will be eliminated by                                                                   |
|     | (a) by interchanging the resistances (b) by interchanging the galvanometer and jockey                                                                    |
|     | (c) by interchanging the battery and the jockey (d) without changing the resistances                                                                     |
| 40) | Potentiometer is an instrument used for the measurement of                                                                                               |
|     | (a) current (b) resistance (c) capacitance (d) potential difference                                                                                      |
| 41) | The equivalent resistance in series combination is                                                                                                       |
|     | <ul><li>(a) Larger than the smallest resistance</li><li>(b) Larger than the largest resistance</li><li>(c) Smaller than the largest resistance</li></ul> |
| 42) | If the length of conductor is haled, then its conductivity would be                                                                                      |
|     | (a) quadrupled (b) haled (c) double (d) unchanged                                                                                                        |
| 43) | If the resistance of a coil is 3 ohm at 20 °C and $\alpha$ = 0.004/ °C then its resistance at 100 °C is                                                  |
|     | (a) $1.98\Omega$ (b) $3.96\Omega$ (c) $7.92\Omega$ (d) $39.6\Omega$                                                                                      |
| 44) | The unit of mobility of free electron is                                                                                                                 |
|     | (a) $Vm^{-1} s^{-2}$ (b) $m^2 Vs^{-1}$ (c) $m^2 V^{-1}s^{-1}$ (d) $m^2 V^{-1}s$                                                                          |
| 45) | If the length of the conductor is doubted and its area, is reduced to half of its value, then its resistance would be                                    |
|     | (a) increased by two times (b) increased by four times (c) decreased by four times (d) decreased by two times                                            |
| 46) | RMS voltage and frequency of $v = 230 \sin (314 t)$ A.C. source.                                                                                         |
|     | (a) 162.6V, 50Hz (b) 230V, 50Hz (c) 230V, 60Hz (d) 162.6V, 25Hz                                                                                          |
| 47) | Dimension of Resistance is                                                                                                                               |
|     | (a) $ML^2 T^{-3} A^{-2}$ (b) $ML^2 T^{-1} A^{-1}$ (c) $ML^2 T^{-2} A^{-3}$ (d) $ML^2 T^{-1} A^{-2}$                                                      |
| 48) | Kirchoff's I and II laws are based on conservation of                                                                                                    |
|     | (a) charge and energy (b) energy and charge (c) energy and voltage (d) energy and current                                                                |
| 49) | If a current of 7.5 A is maintained in a wire for 45 s then the charge flowing through the wire is :                                                     |
|     | (a) 6 C (b) 365.5 C (c) 3 C (d) 337.5 C                                                                                                                  |
| 50) | For the fuse wire, which of the following characteristic is immaterial?                                                                                  |
|     | (a) Radius (b) Resistivity (c) Length (d) None of these                                                                                                  |
|     |                                                                                                                                                          |
|     |                                                                                                                                                          |