QB365 Question Bank Software Study Materials

Ionic Equilibrium Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

Chemistry

Total Marks: 40

 $20 \ge 2 = 40$

1) What are Lewis acids and bases? Give two example for each.

Answer : (i) Lewis acid: It is a species that accepts an electron pair. Eg: Ag^+ ; BF_3 ; A/Cl_3 (ii) Lewis base: It is a species that donates an electron pair. Eg: Cl^- ; NH_3 ; H_2O

2) The concentration of hydroxide ion in a water sample is found to be 2.5×10^{-6} M. Identify the nature of the solution.

Answer : 1. If $[OH^-] > 1 \times 10^{-7} M$, the solution is basic. $2.5 \times 10^{-6} M > 1 \times 10^{-7} M$ 2. \therefore The solution is basic.

3) A lab assistant prepared a solution by adding a calculated quantity of HCl gas 25° C to get a solution with $[H_3O^+] = 4 \times 10^{-5}$ M. Is the solution neutral (or) acidic (or) basic.

```
Answer : [H_3O^+] = 4 \times 10^{-5}M
pH = -\log_{10}[H_3O^+]
pH=-log_{10}[4 \times 10^{-5}]
pH = -\log_{10}[4] - \log_{10}[10^{-5}]
                                       \log_{10} 10 = 1
pH = -log 4 + 5log_{10}10
= 5 - \log 4
= 5 - 0.6021
=4.3979
```

Since pH is less than 7, the solution is acidic.

4) Define solubility product.

> **Answer**: The solubility product of a compound is defined as the product of the molar concentration of the constituent ions, each raised to the power of its stoichiometric co - efficient in a balanced equilibrium equation.

 $X_m Y_n {}_{(s)} \rightleftharpoons m X^{n+} {}_{(aq)} + n Y^{m-}_{(aq)}$ $K_{sp} = [X^{n+}]^m [Y^{m-}]^n$

5) Define pH.

7)

2 Marks

```
Answer: (i) p^{H} = -\log_{10} [H_{3}O^{+}]
```

(ii) The pH of a solution is defined as the negative logarithm of base 10 of the molar concentration of the hydronium ions present in the solution.

6) ${\rm K_{sp}}$ of AgCl is $1.8 \times 10^{-10}.$ Calculate molar solubility in 1 M AgNO_3

Answer: $K_{sp} = 1.8 \times 10^{-10}$, [AgNO₃]= 1 M $\mathrm{AgCl}_{(s)} \rightleftharpoons \mathrm{Ag}^+_{(\mathrm{aq})} + \mathrm{Cl}^-_{(\mathrm{aq})}$ $\mathrm{AgNO}_{3(\mathrm{aq})} \rightleftharpoons \mathrm{Ag}^+_{(\mathrm{aq}\,)} + \mathrm{NO}^-_{3_{(\mathrm{aq}\,)}}$ $egin{array}{cccc} 1\mathrm{M} & 1\mathrm{M} & 1\mathrm{M} \ ig[\mathrm{Ag^+}ig] = (\mathrm{s}+1) pprox 1 & (\therefore \mathrm{s} << 1) \end{array}$ $[\mathrm{Cl}^-] = \mathrm{s}$ $\mathrm{K_{sp}} = \left[\mathrm{Ag^+}
ight]\left[\mathrm{Cl^-}
ight]$ $1.8 imes 10^{-10} = (1)(s)$ \therefore s = 1.8 × 10⁻¹⁰ M

Calculate the concentration of OH^- in a fruit juice which contains 2×10^{-3} M, H_3O^+ ion. Identify the nature of the solution.

Answer : Given that $H_{2}O^{+} = 2 \times 10^{-3} M$

----- 01v011 (11at 1130 - 4 / 10 - 1/1 $K_w = [H_3 O^+][OH^-]$ $\therefore [OH^-] = rac{K_w}{[H_3O^+]} = rac{1 imes 10^{-14}}{2 imes 10^{-3}} = 0.5 imes 10^{-11} M$ $2 imes 10^{-3}>> 0.5 imes 10^{-11}$ i.e., $[H_3O^+] > [OH^-]$, hence the juice is acidic in nature

8) A solution of 0.10M of a weak electrolyte is found to be dissociated to the extent of 1.20% at 25°C. Find the dissociation constant of the acid.

Answer : Given that lpha=1.20%= $rac{1.20}{100} imes1.2 imes10^{-2}$ $K_a = \alpha^2 c$ $=(1.2 imes 10^{-2})^2(0.1)=1.44 imes 10^{-4} imes 10^{-1}$ =1.44 imes 10 $^{-5}$

9)

Calculate the pH of 0.1M CH₃COOH solution. Dissociation constant of acetic acid is 1.8×10^{-5} .

Answer: $pH=-log[H^+]$

For weak acids, $k=\sqrt{k_a imes C}$ = $\sqrt{1.8 imes 10^{-5} imes 0.1}$ = $1.34 imes10^{-3}$ M $pH = -\log(1.34 imes 10^{-3})$ = 3-log1.34 = 3-0.1271 $= 2.8729 \simeq 2.87$

10) Classify the following as acid (or) base using Arrhenius concept i)HNO₃ ii) Ba(OH)₂ iii) H₃PO₄ iv) CH₃COOH

Answer : i) HNO₃ $\rightleftharpoons^{H_2O}$ H⁺_(aq) + NO⁻_{3(aq)} [Acid] ii) $\operatorname{Ba}(\operatorname{OH})_2 \rightleftharpoons^{H_2O}_{\rightleftharpoons} \operatorname{Ba}^{2+}_{(\operatorname{aq})} + 2\operatorname{OH}^{-}_{(\operatorname{aq})} [\operatorname{base}]$ iii) $\operatorname{H}_3\operatorname{PO}_4 \rightleftharpoons^{H_2O}_{\rightleftharpoons} 2\operatorname{H}^{+}_{(\operatorname{aq})} + \operatorname{HPO}_4^{2-}_{(\operatorname{aq})} [\operatorname{Acid}]$ iv) CH₃COOH $\rightleftharpoons^{H_2O}$ CH₃COO⁻ (aq) + H⁺(aq) [Acid]

11) Write down the conjugate acid and base of the following (i) NH₃ (ii) HSO⁻4

Answer:

	(i)	(ii)
Conjugate Acid	NH_4^+	H_2SO_4
Conjugate Base	NH_2^-	SO_4^{2-}

12) BF_3 is termed as an acid though it does not contain H^+ ions. Explain.

Answer: According to Lewis concept of Acid and bases, any species capable of accepting an electron pair is an acid. BF₃ is electron deficient so accepts a pair of electron, Hence termed as acid

What is meant by conjugate base and conjugate acid?

Answer : According to Lowry Bronsted (acid - base) reaction:

(i) The species that remains after the donation of a proton is a base (Base 1) and is called the conjugate base of the Bronsted acid (Acid 1). Acid 1 is the conjugate acid of Base 2. Base 2 accepts a proton from Acid 1 and it given Acid 2. So Acid 2 is the conjugate acid of Base 2.

(ii) In other words, chemical species that differ only by a proton are called conjugate acid - base pairs.

14) What is meant by auto ionisation of water? Explain. **Answer :** When an acidic or a basic substance is dissolved in water, depending upon its nature, it can either donate (or) accept a proton. In addition to that the pure water itself has a little tendency to dissociate. i.e, one water molecule donates a proton to an another water molecule. This is known as auto ionisation of water and it is represented as

HO
acid 1
$$Hightarrow H_{acid 2} \rightarrow H_{3}O^{+} + OH_{base 1}$$

 L
Conjugate acid - base pairs

In the above ionisation, one water molecule acts as an acids while the another water molecule acts as a base.

¹⁵⁾ What is the effect of temperature on $[H_3O^+]$, $[OH^-]$ and K_w ? Why?

Answer : With the increase in temperature, the $[H_3O^+]$ and $[OH]^-$ also increases. Hence the ionic product of water also increases. This is because the dissociation of water is an endothermic reaction.

16) The pH of 10^{-8} M HCl is not 8. Why?

Answer: 1. In addition to the auto ionisation of water, the following equilibrium due to the dissociation of HCl can also exist

 $HCl + H_2O \implies H_3O^+ + Cl-acid 2 \qquad base 1$

2. In addition to the auto ionisation of water, HCl molecules also produces H_3O^+ ion by donating a proton to water.

Hence $\left[\mathrm{H}_{3}\mathrm{O}^{+}\right] > \left[\mathrm{OH}^{-}\right].$

3. It means the aqueous HCl solution is acidic.

4. In such cases $[H_3O^+] = 10^{-8} + 10^{-7} = 11 \times 10^{-8}M$ $pH = -\log_{10}[H_3O^+]$ $= -\log_{10}(11 \times 10^{-8})$ $= -\log_{10} 11 - 8\log_{10} 10]$ $= 8 - \log 11 = 8 - 1.0414 = 6.9586$

17) What are basic solution? What will be their pH?

Answer: (i) When a solution has $[H_3O^+] < 1 \times 10^{-7}M$ or $[OH^-] > 1 \times 10^{-7}M$ at 25°C, it is called a basic solution. (ii) Their pH will be > 7.

18) How will you identify whether an acid is strong or weak from K, value?

Answer: (i) Acids with K_a value greater than ten are strong acids and less than one are weak acids.

(ii) Eg. at 25°C HCl $(K_a = 2 \times 10^6) \longrightarrow$ strong acid CH₃COOH $(K_a = 1.8 \times 10^{-5}) \longrightarrow$ weak acid

- 19)
 - ⁹ Define degree of dissociation.

Answer: Degree of dissociation (a) is the fraction of the total number of moles of a substance that dissociates at equilibrium. $\alpha = \frac{\text{Number of moles dissociated}}{\text{Tetal number of moles dissociated}}$

 α — Total number of moles

20) What is a buffer solution?

Answer : A solution which resists the drastic changes in its pH upon addition of small quantities of acids or bases is called a buffer solution.